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Abstract

This paper revisits the well-known volunteer’s dilemma on the production of a

collective good when a single participant is sufficient for the task. We propose a cost-

sharing model with a volunteering cost that decreases exponentially in the number of

volunteers. We show that, at the unique mixed-strategy equilibrium, the probability

of production may increase in the number of players for sufficiently low volunteering

costs. This provides an alternative account of the fit of the model with some real-life

situations and a better fit with the associated experimental results: A larger group

does erode the individual incentive to volunteer but in an offsetting way that favors

the production of the collective good. A second result is that the mixed-strategy

equilibrium may be more socially efficient than the pure-strategy equilibrium for some

parameter values, which is a major reversal with respect to the standard dilemma and

many other coordination games.
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1 Introduction

The volunteer’s dilemma Diekmann (1985) is a n-player, complete-information, simultaneous-

move game dealing with the production of a collective good or task that requires a single

player or volunteer to produce. Each individual makes a binary decision to volunteer (at a

cost c) or not, knowing that a benefit b accrues to each player if the good is produced. The

latter outcome requires only (at least) one player to volunteer, with more players adding

cost without accruing any extra benefit to anyone. In general, b > c, so an individual would

have the incentive to volunteer if she were the only player in the game. However, when other

players are present, this individual incentive to volunteer might be eroded by the hope that

someone else will step in to accomplish the task so that she can obtain the same benefit at

no cost. In other words, the game provides an opportunity for free-riding. This incentive to

free-ride produces equilibrium outcomes that are socially inefficient.

Following Diekmann (1985), other works in the same vein have extended the original

model in several directions. Weesie (1993) proposed an endogenous timing game as a variant

of Diekmann’s static model where players decide when to step in given other players have

not done so yet, and proved that the asymmetric version of this timing game (i.e., players

have distinct cost-to-gain ratios) resolves the dilemma as the most favorable player will

volunteer immediately. Weesie (1994) further shows that the observability of other players’

behavior (allowed in the timing game) and the uncertainty associated with other players’

payoffs may both enhance the individual and the collective volunteering probabilities when

n is sufficiently large, except when uncertainty is very high.

Weesie and Franzen (1998) first introduced the key idea of volunteer cost-sharing, assum-

ing that the volunteering cost is divisible among all volunteers by even splitting (i.e., each

volunteer incurs cost c/k when k players volunteer) or by a fair lottery. They theoretically

proved that, with a larger group size, each individual is less likely to volunteer and the col-

lective good is less likely to be provided. However, their experimental results only support

their conclusion for the individual volunteering probability, but not for the group’s.

The volunteer’s dilemma often emerges in a diversity of political, economic, biological

and other conflict settings, including those discussed in Bliss and Nalebuff (1984), Konrad
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and Morath (2021), and Konrad (2024). In particular, the volunteer’s dilemma game is

often associated with the real-life story in 1960s New York City of Kitty Genovese, who

was assaulted and murdered in public with 38 witnesses who either saw or heard the attack

and did not take the initiative to call the police until it was too late. This event has called

attention to the problem of the bystander effect, well known in social psychology.

The volunteer’s dilemma or closely related variants also often arise naturally in various

aspects of international conflicts. The painful episode of Barbary piracy, kidnapping, ran-

soming and enslavement paralyzed international trade and navigation and threatened coastal

areas in the Mediterranean world for several centuries starting in the early 1500s. Repeated

respective bombing expeditions by the Spanish, UK, US and Dutch Navies brought only

temporary retrieves from this global threat at different points in time (e.g. Gawalt, 2011).

The more recent episode of Somali piracy is another important example of a major imped-

iment to international trade and navigation in the Red Sea for over ten years before it was

finally solved by direct intervention by a coalition of Western countries’ Navies, see e.g.,

De Luce (2016); Karawita (2019).

In some other military settings, a volunteer is often needed to carry out a critical and

dangerous task that would yield a major benefit to an entire army unit. Such situations

include military scouts in low-tech warfare, sentries in nighttime warfare, kamikaze pilots

and divers in World War II, and suicide bombers more recently. One might add the well-

known story of Pheidippides who ran from the plain of Marathon to the city of Athens in

490 BC to announce the Greek victory at Marathon and warn the Athenians to prepare for

possible retaliation from the Persians, thus giving rise to the modern Marathon competition.1

However, as Weesie (1993) surmised, the true cause behind Ms. Genovese’s death was

likely due to free-riding behavior on the part of the witnesses, rather than indifference to

her plight. Every witness likely assumed someone else would call the police. Then a natural

question is, would she have survived the fatal encounter with bystanders’ help if there had

been a few witnesses instead of 38? Similar questions of sensitivity to size may be asked

concerning each of the above contextual examples of the volunteer’s dilemma. The seminal

work of Diekmann (1985), which revealed the rationale and inefficiency behind the volunteer’s

dilemma, predicts that the collective volunteering probability should decrease in the number
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of players, unless people assume, in line with Kant’s categorical imperative, that everyone’s

actions are bound by the same morality (a universal law) so that one player chooses an action

by assuming all other players will make the same choice. Hence, Diekmann’s model seems

to be questionable in terms of its prediction of the collective volunteering probability.

In other words, would a larger group size make more or less likely the production of

the collective good, given that there is a reduced individual incentive to take action but

an increased chance of at least one person intervening? classic models of the volunteer’s

dilemma support the conclusion of no intervention being more likely when there are more

witnesses. However, it is natural to ponder whether this conclusion is a priori realistic.

Another perspective is provided by experimental results on the volunteer’s dilemma.

Weesie and Franzen (1998) report no support for the conjecture that the collective volun-

teering probability of at least one player volunteering should decrease in the group size; in

fact, some of their results seem to lean towards the opposite outcome (see Table 4 in Weesie

and Franzen, 1998). Goeree et al. (2017) conducted a full-fledged laboratory (experimental)

test of the standard volunteer’s dilemma and confirmed that individual volunteering rates are

lower with larger groups, but the incidence of no-volunteer outcomes declines with group size

which means that the collective good is more likely to be provided in larger groups. These

findings are also reinforced in the main by other experimental studies of the bystander effect,

e.g., by Campos-Mercade (2021).

To the best of our knowledge, other than resorting to philosophical notions such as

Kant’s imperative as suggested by Diekmann (1985) or bringing in incomplete information

as in Weesie (1994) (and then only for sufficiently large n), there is no formal theoretical

explanation for the observed experimental results that the collective volunteering probability

may increase with group size. This paper proposes a novel cost-sharing rule that is different

from Weesie and Franzen (1998) to settle this issue. The simple justification for an individ-

ual’s volunteering cost to decrease in the total number of volunteers is the efficiency gained

by collective action in the production of the public good. For instance, for the real-life piracy

cases mentioned earlier, one would expect that a solution entailing joint action by a set of

different countries to be more effective at policing the open seas and enforcing a long-run

solution. This is in fact precisely what happened in the Somali episode. Similarly, in the
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Marathon example, several volunteers are more likely to succeed due to the risk of exhaustion

that may strike before arrival in Athens (rather than after as the well-known story goes). In

the case of Kamikaze action, multiple volunteers are also more likely to succeed in light of

the reduced risk of failure due to enemy fire.2 In random attacks taking place in public, of

the type Kitty Genesove was subjected to, it will often be much less costly for a group of

volunteers to overcome the assailant than for a single person to do so. Indeed, the idea of

cost-sharing is easily seen to be natural in a variety of relevant contexts for the volunteer’s

dilemma, including some of the examples used to justify the classic model. Finally, many of

the settings presented here share the feature that the more participants become active, the

lower the cost incurred by each to get the task accomplished.

The even-split cost-sharing structure (a hyperbolic one) proposed by Weesie and Franzen

(1998) does not reverse the classical conclusion that the collective volunteering probability

is lower with larger groups, even if it seems to contradict their experiment results provided

in the same paper following the theoretical analysis. Therefore, the major motivation of

this paper is to modify the cost structure first discussed by Weesie and Franzen (1998)

in a plausible and tractable way to make a correct prediction for the comparative statics

of the collective volunteering probability. We propose a novel cost function that decays

exponentially in the number of volunteers. We argue below that this cost structure is a

plausible one for a variety of settings to which the game at hand a priori applies. Furthermore,

the cost structure is also analytically tractable, which is of course a natural requirement, since

the attending computational complexity for mixed-strategy equilibrium and its comparative

statics properties could easily turn out to be prohibitive. The main result of this paper

establishes that this choice of cost function essentially delivers our desired conclusions, that

even though the individual volunteering incentive declines with the group size, the collective

volunteering probability may decrease, increase, or display a non-monotonic pattern in the

group size depending on the cost-benefit ratio. These in turn are now consistent with the

findings from the experimental studies that are cited above.

In addition to studying the equilibrium probabilities of the individual and collective

behavior of volunteering, we also compare the utilitarian welfare (as the sum of payoffs to

all players) under the pure-strategy and the mix-strategy Nash equilibrium, and show that,
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unlike the classic model where pure-strategy equilibrium always brings about higher welfare

than the mixed-strategy equilibrium by way of avoiding cost duplication, it can sometimes

happen that the mixed-strategy equilibrium generates higher welfare than the pure-strategy

one as a result of the proposed cost-sharing synergy when more than one player volunteers.

Another key departure of the present results from the classic model concerns the Pareto-

optimal (welfare-maximizing) outcome. We show that the latter involves infinitely many

volunteers under our cost-sharing rule, as opposed to one volunteer (which coincides with

the pure-strategy Nash equilibrium) in the standard model.

The rest of this paper is organized as follows. Section 2 reviews the standard model and

provides a summary of its results, along with a novel formal welfare analysis and comparison.

Section 3 lays out our modification to the basic model and its associated analysis, including

a similar welfare comparison. Section 4 is a brief conclusion.

2 Diekmann’s original model

This section provides an overview of the classic model of Diekmann (1985) and its main

results. This is followed by an analysis of the welfare properties of the model, along utilitarian

lines. While elementary, this welfare analysis is a novel contribution to the related literature,

to the best of our knowledge.

2.1 The classic model

This subsection provides a brief but self-contained review of the basic model of the volunteer’s

dilemma. The original model is the volunteer’s dilemma game introduced by Diekmann

(1985). We begin with a quick recapitulation of the game. Consider a n-player game (n ≥ 2)

wherein each player has two strategies, volunteer (V ) or stand by (S), and a collective good

can be produced if and only at least one player chooses V .3 The cost to volunteer is c > 0 for

each player. Every player will obtain the same benefit b, with b > c, if the collective good

is produced. There is no cost to any player who chooses to stand by, and no benefit to any

player if the collective good is not produced (i.e., in the case when no one volunteers). The

game is thus a classical symmetric anti-coordination game4 with binary actions.
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The most common contextualization of this game refers to n passers-by witnessing a

person in some distress or danger, who must decide whether to intervene to save the person

or to stand by in the hope that someone else will step in instead. The cost of volunteering

c, in this context, includes the cost of effort, the tacit opportunity cost and the possibility

of being physically hurt in the process by the perpetrator during one’s intervention. The

benefit b consists mainly of one’s moral relief that the crime or harm has been prevented and

the victim saved. The basic assumption reflects the fact that each passer-by has such moral

standards that prompt him to intervene if he happens to be the only witness.

For the special case of a single player (i.e., n = 1), she would act optimally by volunteering

(or choosing action V ) and thus get the payoff b− c > 0. However, when n ≥ 2, a player has

the option to free ride on other players’ efforts as she might expect someone else to choose

V , thus gaining the full benefit b at no cost.

With the general n-player case being a typical game of coordination, a standard simple

game-theoretic analysis leads to the conclusion that every pure-strategy Nash equilibrium

for this basic game involves one player volunteering and all others standing by. Specifically,

this follows from the observation that each player will volunteer when everyone else stands

by and will stand by if at least one other person volunteers. Hence, one and only one player

volunteering constitutes the unique Nash equilibrium strategy vector (up to all possible

permutations of the players). With n players in the game, there exist n such pure-strategy

Nash equilibria, raising the question of role assignment (or equilibrium selection) as to who

should be the one to volunteer while all other players free-ride on her.

Alternatively, due to the fully symmetric nature of the game, a more focal solution

concept is the (symmetric) mixed-strategy equilibrium (see Schelling, 1960). In such an

equilibrium, each player assigns probability p to action V and probability (1− p) to action

S. By assuming symmetry in equilibrium, the expected payoffs associated with the two pure

strategies can be written as

u(V | p) = b− c and u(S | p) = b
(
1− (1− p)n−1

)
,

where (1− (1− p)n−1) is the probability that at least one among the other (n − 1) players
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chooses V so that the collective good is produced. Invoking the indifference criterion (i.e., in

a mixed-strategy equilibrium, a player should be indifferent between choosing V or S) and

equating the two payoffs gives the mixed-strategy equilibrium p∗, as well as the probability

of the collective good being produced (i.e., the probability that at least one player chooses

V ) denoted by P ∗ = 1− (1− p∗)n:

p∗ = 1−
(c
b

) 1
n−1

and P ∗ = 1−
(c
b

) n
n−1

.

It may be seen by inspection that both the individual’s probability to volunteer p∗ and the

collective volunteering probability P ∗ decrease in the cost-benefit ratio c
b
and in the group

size n. It is also easy to verify that as n → ∞, p∗ → 0 and P ∗ → 1 − c
b
. This limit result

reveals two a priori counter-intuitive implications of the free-riding problem: as the number

of witnesses grows sufficiently large, each witness will almost certainly choose to stand by;

and moreover if the volunteering cost c is close to the benefit b, it is almost certain that

nobody will step in! The former result, that individual incentive erodes monotonically with

expanding group size, is to some extent not so surprising as a consequence of the free-riding

opportunity afforded by the game. The latter result, that the crowd collectively decides not

to volunteer when the group size is sufficiently large, is more of an extreme outcome.

We now complete the existing analysis of the original game by adding a novel welfare

analysis, which is presented in the next subsection.

2.2 Welfare analysis for the pure-strategy and mixed-strategy equi-

libria

This subsection provides a welfare comparison of the two different Nash equilibrium points (in

pure and mixed strategies) of the volunteer’s dilemma. In the pure-strategy Nash equilibrium

of the basic game, the unique outcome (up to all possible permutations of the players) is

for one player to volunteer and for all other players to stand by. Indeed, it is easy to verify

that this is the only case where each player’s action constitutes the best response to all other

players’ action choices because any situation with more than one volunteer would result in

one of the volunteers withdrawing to free ride.
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In the pure-strategy equilibrium, the victim is saved with certainty and thus every player

gets a benefit of b, which is henceforth (without loss of generality) normalized to b = 1.

In addition, there is exactly one volunteer who pays the cost c, 0 < c < 1. Therefore, the

corresponding utilitarian social welfare, the sum of all players’ payoffs, is

W̃PS = n− c.

It is important to observe that the pure-strategy equilibrium is Pareto-optimal. In fact,

as is easily seen, it corresponds exactly to the first-best solution one would obtain by a social

planner aiming to maximize a utilitarian social welfare composed of the sum of the n agents’

utilities by picking the number of volunteers to participate.

As a consequence, the pure-strategy equilibrium delivers higher utilitarian social welfare

than the mixed-strategy equilibrium. Intuitively, the inefficiency of mixed-strategy play

stems from the duplication of costs for all the cases with more than one volunteer.

It is of interest to estimate the welfare loss due to the use of the mixed-strategy equi-

librium relative to the pure-strategy equilibrium. To this end, observe that, under the

mixed-strategy equilibrium, the expected utilitarian social welfare has the following expres-

sion:

W̃MS =
n∑

k=1

(n− kc)
(
Ck

np
k(1− p)n−k

)
= n− n(1− p)n − c

n∑
k=1

k
(
Ck

n(p)
k(1− p)n−k

)
= n− n(1− p)n − c

n∑
k=1

np
(
Ck−1

n−1(p)
k−1(1− p)n−k

)
= n− n(1− p)n − ncp,

where
(
Ck

np
k(1−p)n−k

)
is the binomial probability of k players volunteering at equilibrium,

and (n−kc) is the corresponding social welfare. The equilibrium probability of volunteering

has been solved earlier to be

p = p∗ = 1− (c)
1

n−1 .
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Taking the difference between the social welfare of the pure-strategy and the mixed-

strategy equilibria, we observe that W̃PS − W̃MS = −c+n(1−p)n+ncp, and upon replacing

p with p∗, one gets

W̃PS − W̃MS = c(n− 1) > 0 for c ∈ (0, 1) and n ≥ 2.

The efficiency loss due to the use of mixed strategies increases in both the volunteering cost

and the number of players in the game.5

The main result here is formally summarized next.

Theorem 1. The pure-strategy equilibrium is Pareto efficient while the mixed-strategy equi-

librium generates an efficiency loss that increases with the number of agents present in the

game.

This conclusion is to be expected on intuitive grounds since pure-strategy equilibrium

ensures that the task is accomplished with probability one and does so while avoiding any

duplication in volunteering costs. Neither of these features is satisfied by the symmetric

mixed-strategy equilibrium. In particular, every number of volunteers from 0 to n arises

with positive probability, thus giving rise to a corresponding level of duplication of the

volunteering costs (except for the case when n = 0, 1), including the maximal level of nc

when everyone volunteers. These duplication costs (or mis-coordination costs inherent to

mixed-strategy play) are a pure loss for the group and thus give rise to social inefficiency.

In the next section, we propose a cost-sharing model that is more realistic for many of

the possible applications of this model, as noted earlier. This new cost structure also partly

mitigates the social inefficiency due to cost duplication.

3 Volunteer’s dilemma with cost-sharing

This section proposes a new cost function for the volunteer’s dilemma while keeping the rest

of the game the same. The new feature we incorporate into the model is that, instead of each

paying c to intervene, a volunteer’s cost decreases as more players volunteer. We analyze the

implications of this new cost function on the mixed-strategy and on the conduct of a welfare
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comparison of the two different types of equilibria as we did in Diekmann’s original model,

and show a major reversal of the comparison results with respect to the standard dilemma.

Cost-sharing is not a new idea in the study of the volunteer’s dilemma. In general, the

idea that cost-sharing will alleviate one’s burden to comply with social morality in large

groups and thus encourage cooperation is quite an intuitive one. These effects turned out to

be the case for the two cost structures proposed in Weesie and Franzen (1998), namely evenly

splitting the cost among volunteers as one and randomly drawing one volunteer to bear the

full cost as another. Both of these schemes lead to an increase in the probability of (at least)

one player volunteering compared to a game where the cost is not shared; however, the com-

parative statics, i.e., how the probabilities change with group size, remain qualitatively the

same as in Diekmann’s original model. In addition, the theoretical prediction is inconsistent

with their experimental results given in the same paper: Indeed, despite the limited varia-

tion of n in the experiment (n = 2, 4, 8), “the observed macro probabilities of public goods

production are almost always larger in the 8-person groups than in the smaller groups.”The

inconsistency with experimental results continues with more recent experimental studies on

the subject; see for instance Goeree et al. (2017) and Campos-Mercade (2021).

Cost-sharing is a plausible assumption in the dilemma context. Weesie and Franzen

(1998) provided several justifying contexts for their cost-sharing assumption: the chance of

being hurt by the perpetrator is lower when more passers-by intervene, one volunteer needs

to exercise less labor for the maintenance of a community center when more volunteers show

up, etc. The idea of cost-sharing may be easily extended to military settings. In defending

Somali piracy, each country, upon forming a counter-piracy coalition, needs to support a

fraction of the total task forces or provide guardians of a divided common sea area. In this

way the more countries voluntarily join the coalition, the less military costs a member incurs.

In the well-known story giving birth to the modern Marathon race, one may ponder if other

volunteers had run with Pheidippides to the city of Athens, the Athenian Herald would not

have dealt with potential attacks along the way alone and, lifted by the increased morale of

the group, may have been able to avoid the mortal collapse upon his arrival.

Is Weesie and Franzen’s (1998) theoretical prediction robust to other forms of cost-

sharing? It turns out that the key comparative statics results depend on how the cost is
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shared among volunteers. In what follows, we propose a new cost structure that gener-

ates equilibrium comparative statics that may account for the inconsistency exhibited in the

“macro probabilities of public goods production,”i.e., the collective volunteering probability.

3.1 The model with a new cost structure

In this subsection, we propose a new form of cost-sharing for the volunteer’s dilemma, a

cost function that declines exponentially as the number of volunteers grows. As a preview,

the main result is that this cost structure may reverse the comparative statics of the mixed-

strategy equilibrium as far as the probabilities of participation are concerned.

For simplicity and without loss of generality, we normalize the benefit as b = 1, and thus

let the cost satisfy 0 < c < 1, so that the key inequality that c < b is maintained. When

k volunteers come forward, Weesie and Franzen (1998) assume that they split the cost c so

that each volunteer incurs cost c
k
. Instead, we shall assume that each volunteer incurs cost

ck. Both are simple and tractable specifications of the cost-sharing idea, in addition to being

economically plausible and intuitive cost structures.6

Assumption. If there are k volunteers, 1 ≤ k ≤ n, then the cost incurred by each volunteer

for choosing V is ck, where 0 < c < 1.

We now characterize the Nash equilibrium set for the game with this new cost structure.

We first observe that the set of pure-strategy equilibria is the same as for the classic model.

Indeed, if (n − 1) players do not volunteer, then it is a best response for the nth player to

volunteer since c < b. But if any one player volunteers, then no other player will do so, since

this will be costly to her while the benefit is already there with one volunteer (and will not

increase). Thus the mutual best responses pose a free-riding problem.

Observe that our cost function and the classical one coincide, i.e., ck = c
k
, only when

k = 1, and ck < c
k
when k grows sufficiently large (almost immediately for small c’s, such as

for c < 0.5). Hence, our assumption implies extra efficiency in production associated with

cooperation, e.g., the individual risk of getting hurt drops by more than two-thirds if three

passers-by jointly intervene in public violence, one volunteer needs to exercise less than half

the effort in community maintenance as before if he collaborates with another volunteer, etc.
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In the piracy defense case, a member country benefits by having more coalition members

not only from the divided task force and common sea areas (which may assume the even-

splitting feature), but also from the coordinated information, technology sharing and real-

time communications. Thus this cost function embodies a stronger form of cost sharing, one

that exhibits the key property of increasing returns to group size.7

Imposing symmetry in equilibrium, the expected payoffs of the two pure strategies are

u(V | p) = 1−
n−1∑
k=0

ck+1Ck
n−1p

k(1− p)n−1−k and u(S | p) = 1− (1− p)n−1

where p is the (symmetric) probability of choosing V for each player, index k (of summation)

is the number of other volunteers out of (n− 1) players except the focal player, Ck
n−1 is the

combinatorial number for selecting k active players out of (n− 1) players.

The tractable nature of our cost function is reflected in the fact that

u(V | p) = 1− c
n−1∑
k=0

Ck
n−1(cp)

k(1− p)n−1−k = 1− c(cp+ 1− p)n−1,

which is a direct consequence of the binomial theorem formula.

For the mixed-strategy equilibrium, by equating the two expected payoffs u(V | p) and

u(S | p), we can solve for the equilibrium probability of volunteering p∗ of each individual,

and then derive the probability of the collective good being produced P ∗ = 1 − (1 − p∗)n

accordingly. Some simple algebra gives rise to the next result.

Theorem 2. Under the exponential cost structure, there is a unique mixed-strategy equilib-

rium where the individual probability of volunteering p∗ and the probability of the collective

good being produced P ∗ are given by:

p∗ = 1− c(
1
c

) 1
n−1 + c− 1

and P ∗ = 1−
( c(

1
c

) 1
n−1 + c− 1

)n
. (1)

The proof of this Theorem follows from the steps described in the preceding paragraph

and thus the associated computational details are omitted.

The tractability of the analysis here stems from the compatibility of the hyperbolic or
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exponential functional form with the use of the binomial formula and thus a priori need not

extend to other cost functions.8 Therefore, although there are other possible ways to model a

qualitatively similar cost structure, traceability confines us to this specific exponential form,

which is, nonetheless, very plausible and sufficient to generate a broader, novel and intuitive

comparative statics pattern.

Theorem 3. The equilibrium probabilities have the following properties.

1. Both p∗ and P ∗ globally decrease in c.

2. p∗ globally decreases in n.

3. There exist 0 < c1, c2 < 1 such that:

i) when 0 < c < c1, P
∗ increases in n for all n ≥ 3.9

ii) when c1 < c < c2, P
∗ decreases in n first and then increases in n.

iii) when c2 < c < 1, P ∗ decreases in n for all n ≥ 3.

Compared to Weesie and Franzen (1998), who arrived at the conclusion that P ∗ is globally

decreasing in n for all parameter ranges, Theorem 3 allows P ∗ to increase almost globally in

n for sufficiently small c. On the other hand, when c is sufficiently large (as in 3 (iii)) the

two models’ conclusions coincide. For intermediate values of c, P ∗ is inverse-U-shaped in n,

in line with the present model being an in-between scenario of the other two models.

Therefore, our results provide a potential justification for the lack of congruence with

the theory that was found in Weesie and Franzen’s (1998) experimental data. Put in a

realistic context, the Theorem suggests that given the exponential cost structure, whether a

larger crowd favors the production of the collective good depends on the magnitude of the

cost parameter of volunteering (i.e., c). That is, if the perpetrator appears to be weak and

easily restrained, the violence is more likely to be prevented or stopped when there are more

witnesses. Similarly, if the workload of the community center’s maintenance is relatively

light, the center is more likely to be well-maintained with a larger community size. The

opposite holds if the perpetrator appears ferocious (or is armed) or if the workload seems

daunting, corresponding to a high volunteering cost.

In addition to the absolute magnitude of the cost, the comparison of our model and

Weesie and Franzen’s (1998) model suggests that the individual and collective volunteering
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probabilities are also affected by the way the costs are shared among all volunteers. As

mentioned earlier, the exponential cost structure is stronger than the even-splitting cost

structure, and consequently, such extra efficiency in cooperation makes the collective good

more likely to be produced in a larger group.

Naturally, the mixed-strategy equilibrium in our setting still reflects excessive volunteer-

ing and cost duplication with a significant probability. Nonetheless, the strong cost-sharing

structure implies that the payoff cost to such mis-coordination remains bounded, so that the

probability of the public good being provided ends up being higher with larger group sizes.

3.2 Welfare comparison with cost sharing

In the standard model, we have conducted a welfare analysis that compares the pure-strategy

and mixed-strategy equilibria and calculates the welfare loss associated with the latter,

W̃PS − W̃MS, which arises due to the duplication of volunteering costs and increases with

the number of agents in the game. The same welfare comparison can be conducted with

our cost-sharing assumption. However, pure-strategy equilibrium is no longer the Pareto-

optimal solution because when the game has more than one volunteer, despite the downside

of cost duplication, each volunteer also incurs a lower individual cost due to the cost-sharing

synergy, so the overall cost associated with multiple volunteers may a priori increase or

decrease compared to the pure-strategy equilibrium, i.e., when there is one volunteer.

We begin with a characterization of the Pareto-optimal outcome of this game. This can

be derived by maximizing the welfare function, W = n − kck, with respect to k, which

is equivalent to minimizing the total cost kck. Observe that kck approaches 0 when k

approaches infinity, which is the minimal value the total cost can take for k ≥ 1. Therefore,

the welfare-maximizing outcome is the same as the cost-minimizing outcome and consists of

having infinitely many volunteers given the cost-sharing synergy, as opposed to one volunteer

in the classic model. The corresponding (maximal) welfare is thus W = n.

The pure-strategy equilibrium social welfare of our new model is the same as in the classic

model, for the equilibrium still involves only one volunteer. Therefore, the utilitarian welfare

corresponding to any of the pure-strategy Nash equilibria WPS is given by the total benefit
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minus the total cost, which equals that given in the classic model, i.e.,

WPS = W̃PS = n− c.

Hence, the pure-strategy equilibrium fails to be Pareto efficient with cost sharing.

As for the (unique) mixed-strategy equilibrium, the expected social welfare is

WMS =
n∑

k=1

(n− kck)
(
Ck

np
k(1− p)n−k

)
= n− n(1− p)n −

n∑
k=1

k
(
Ck

n(cp)
k(1− p)n−k

)
= n− n(1− p)n −

n∑
k=1

ncp
(
Ck−1

n−1(cp)
k−1(1− p)n−k

)
= n− n(1− p)n − ncp(1 + cp− p).

where
(
Ck

np
k(1− p)n−k

)
is the binomial probability of k players volunteering in the equilib-

rium, and (n− kck) is the associated social welfare under the cost-sharing rule.

Substituting p by the equilibrium p∗ given in (1), we get WMS as a function of n and

c. This expression of WMS is complicated and cannot be compared with WPS analytically.

We thus resort to graphical simulation to shed light on the comparison between WMS and

WPS. After simulating the difference WPS − WMS for a large range of c and n, we found

that WPS > WMS for c or n sufficiently large, while WPS < WMS for sufficiently small c

(approximately for c < 0.38) and small n. This is the case when the cost-sharing synergy

is rather strong, as the cost reduction slows down when k becomes larger because ck is a

convex function of k.

Therefore, unlike the classic model, neither equilibrium is efficient and the mixed-strategy

equilibrium may generate higher social welfare than the pure-strategy equilibrium when both

the cost to volunteer and the number of players are relatively small. This is a strong reversal

outcome for an anti-coordination game since the reverse conclusion is broadly the norm

for a large class of such games, including the standard volunteer’s dilemma. Intuitively,

this conventional conclusion is due to the fact that the mixed-strategy equilibrium involves
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a substantial amount of irrelevant volunteering and associated cost duplication, while the

pure-strategy equilibrium is socially efficient, as it avoids any such excessive volunteering

and cost duplication.10

In order to provide some intuition, let us inspect the two-player case, i.e., n = 2, and let

f(c) = WPS −WMS. Then we have f(0) = 0, and

f ′(c) = −c4 − 2c3 + 5c2 − 6c+ 1

(c2 − c+ 1)2
.

Moreover, since f ′(0) = −1 and f ′(1) = 1, the polynomial in the numerator has at least one

real root in the interval (0, 1). Therefore, there exists a c̄ ∈ (0, 1) for which f is decreasing

for c ∈ (0, c̄), and since f(0) = 0, we get that f(c) < 0 for c ∈ (0, c̄). As a result, for n = 2,

there exists an interval (0, c̄) for which WPS < WMS.

In the general case, for n > 2, we have, with A =
(
1
c

) 1
n−1

f ′(c) =
n2 (nA− n+ 1)

(n− 1)(c+ A− 1)2

(
c

c+ A− 1

)(n−1)

− c3n2A2(nA−N + 1)

(n− 1)(c+ A− 1)5

− cn(A− 1)(c− nA+ n− 2 + A)

(n− 1)(c+ A− 1)2
− 1.

We observe that, for each n, we can identify a c̄ (the larger n, the smaller c̄) such that

f ′(c) < 0 for c ∈ (0, c̄). Given f(0) = 0, in the same spirit, it follows that we have

f(c) < 0 for c ∈ (0, c̄). Hence, with sufficiently small c and n, the mixed-strategy equilibrium,

despite its inherent cost duplication, can generate higher social welfare than the pure-strategy

equilibrium, as a result of the proposed cost-sharing rule. This is a key reversal to the

standard welfare comparison results for many such anti-coordination games. In our case, the

cost duplication is partially offset by the cost-sharing efficiency among volunteers, especially

when the individual cost is sufficiently low that the exponential decay of costs is rapid.

4 Conclusion

This paper has re-examined the volunteer’s dilemma, with as principal motivation, to explore

a plausible modification of the cost structure involving cost sharing with a view to inducing
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the mixed-strategy equilibrium to reflect that a larger group size may favor the production of

the collective good. To this end, the key ingredient is a novel (individual) cost function that

decays exponentially in the number of volunteers. This is a plausible and realistic scenario in

some practical contexts for the volunteer’s dilemma game, including some of the well-known

common applications of the model. In addition, this theoretical finding may partially explain

the divergence between the predictions of the classical theory and associated experimental

results presented in many past studies.

Our result suggests that the characteristics of the individual and the collective incentives

to volunteer are not only affected by the absolute magnitude of the volunteering cost but

also by the way the cost is shared among all volunteers, i.e., how efficiently the volunteers

may collaborate with one another. In other words, it appears that a key property of the

present cost function is the increasing returns to group size implicit in the exponential cost

structure, which is interactively affected by the magnitude of the volunteering cost.

Furthermore, the cost structure is also analytically tractable, which is of course a natural

requirement, since the attending computational complexity for mixed-strategy equilibrium

and its comparative statics properties could easily turn out to be prohibitive. The main re-

sult of this paper establishes that this choice of cost function essentially delivers our desired

conclusions on the collective production probability for the public good. Another result is

that the mixed-strategy equilibrium is more socially efficient than the pure-strategy equi-

librium for a significant range of parameter values. This in turn is a major departure from

the standard volunteer’s dilemma as well as from well-known conclusions for coordination

games more broadly. In addition, the welfare-maximizing outcome is to have infinitely many

volunteers under our cost-sharing rule, as opposed to one volunteer (which coincides with

the pure-strategy Nash equilibrium) in the standard model.

Finally, further work on the topic may aim at strengthening our results by selecting

other meaningful and more powerful forms of cost sharing. However, due to the inherent

combinatorial aspects of the game, it seems challenging to further extend the cost structure

without compromising analytical tractability.
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Notes

1. Since the volunteer dies in the latter examples, either with certainty for the Kamikaze or the suicide bombers

or unexpectedly for the Marathon runner, these examples fall somewhat outside the scope of the volunteer’s

dilemma if one does not ascribe a personal value to the sacrifice of one’s life for a higher cause.

2. Some remarks on the fit of these scenarios with the volunteer’s dilemma paradigm are in order. As uncer-

tainty, often a key ingredient in these settings, can be integrated into the game (with expected payoffs) via

certainty equivalence, which clearly holds here due to the simple additive nature of the payoffs. In addition,

the presence of a group of volunteers affects the expected benefit function in a positive way, and not the

individual cost function. However, this may be made equivalent to a setting with cost effects by simple

rescaling.

3. Theoretically, we can generalize the requirement on the number of volunteers needed for production to, say,

that m ≥ 1 volunteers are needed for production. However, this parameter turns out to affect the order of

the equation in solving the mixed-strategy equilibrium and some higher-order polynomials will render the

equilibrium unsolvable in terms of an explicit (and manageable) solution.

4. As such, the game is one of strategic complements, or a supermodular game (see e.g., Amir, 2005).

5. It is interesting to observe that W̃MS = n − nc, which is equivalent to the welfare of having n volunteers.

Indeed, the volunteering cost saved by having fewer than n volunteers is offset by the social loss of no

volunteer intervening at all, i.e., k = 0, which is possible under mixed-strategy equilibrium.

6. Indeed, due to the mathematical properties of the game and the need to work with binomial expansions, we

could not find another tractable way to model cost-sharing in this context except the hyperbolic function

given in Weesie and Franzen (1998) and the exponential function studied here.

7. For instance, when c = 0.4, we have that, as k goes across the values 1,2, and 4, the cost declines from 0.4 to

0.16, to 0.0256 (instead of from 0.4 to 0.2, to 0.1 respectively, as implied by the cost-sharing form of Weesie

and Franzen, 1998).
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8. In particular, if we change the assumption to require more than one volunteer’s participation in the good’s

production (e.g., the violence can only be stopped when two or more passers-by intervene), then the index

k in the summation in u(V | p) starts from a number greater than 0, and consequently the equation

u(V | p) = u(S | p) becomes a higher order polynomial of p which is unsolvable.

9. Notice that we impose n ≥ 3 instead of n ≥ 2. In fact, P ∗ always decreases in n at the point n = 2, but may

start to increase when n is slightly larger than 2 so that discretely P ∗ is greater at n = 3 than at n = 2. To

avoid mathematical complications we ignore P ∗’s property at the singular point, n = 2.

10. Likewise, in the classical Battle of the Sexes, the mixed-strategy equilibrium is dominated by both of the

pure-strategy equilibria (for both players), which is thus a more extreme outcome than for the volunteer’s

dilemma. Recall that in the Battle of the Sexes, the mixed-strategy equilibrium is welfare-inferior because

independent randomization causes the two players to mis-coordinate, and thus get a zero payoff, with a

significant probability.

5 Appendix

This section of the paper collects all the analytical proofs of the paper.

Proof of Theorems 1 and 2

Theorem 1 follows directly from equating W̃PS − W̃MS = −c + n(1 − p)n + ncp and by

replacing p with p∗, one gets W̃PS − W̃MS = c(n− 1) > 0 for c ∈ (0, 1) and n ≥ 2.

Theorem 2 follows by equating the expected payoffs of actions V and S, u(V | p) = u(S |

p), and then we can solve for the equilibrium probability p∗ and P ∗ by their definitions.

Proof of Theorem 3

The proof of Theorem 3 contains three parts. First, we need to show that the individual

volunteering probability and macro probability of success, p∗ and P ∗, both decrease in the

cost c. Second, we need to show that the individual volunteering probability p∗ decreases in

the group size n (as in the standard model). Then follows the novel part of the results, that

is, the macro probability of success P ∗ can exhibit non-monotonic patterns with respect to

n, depending on the magnitude of c.
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First, let us start by showing that both p∗ and P ∗ decrease in c. Since P ∗ = 1− (1−p∗)n,

it suffices to show that p∗ decreases in c, which follows immediately from the transformation:

p∗ = 1− c(
1
c

) 1
n−1 + c− 1

= 1− 1

1
c

(
(1
c
)

n
n−1 − 1

)
+ 1

.

Therefore, it is straightforward that p∗ is a decreasing function of c, and then it follows that

P ∗ (as a monotonic transformation of p∗) also decreases in c. In the same expression, one

can easily check that p∗ is also a decreasing function of n (given that c < 1).

Now that we have proved the first and second arguments of Theorem 3, we can proceed

with the more important comparative statics of P ∗ with respect to n. Differentiating P ∗

with respect to n in Eq. (1) yields

dP ∗

dn
= −

(
1(

1
c

) n
n−1 + 1− 1

c

)n
 n

(
1
c

) n
n−1 log(1

c
)

(n− 1)2
((

1
c

) n
n−1 + 1− 1

c

) + log
( 1(

1
c

) n
n−1 + 1− 1

c

) .

Notice that
(
1
c

) n
n−1 + 1− 1

c
= 1

c

(
(1
c
)

1
n−1 − 1

)
+ 1 > 1 because 1

c
> 1, thus

(
c

( 1
c)

1
n−1+c−1

)n

is

positive. For the second bracketed term, let us define

f(n) =
n
(
1
c

) n
n−1 log(1

c
)

(n− 1)2
((

1
c

) n
n−1 + 1− 1

c

) and g(n) = − log
( 1(

1
c

) n
n−1 + 1− 1

c

)
, (2)

so the second bracketed term equals f(n)−g(n). Now it is clear that f(n) > 0 and g(n) > 0,

and the sign of dP ∗

dn
depends on the sign of −

(
f(n)− g(n)

)
or g(n)− f(n). To sign dP ∗

dn
, we

need to study the properties of g(n) and f(n). It is straightforward to see that g(n) decreases

in n, but other than this, it is hard to sign f ′(n), f ′′(n) and g′′(n) analytically. However,

since the only parameter is c, which ranges between 0 and 1, using simulation, we have

confirmed that both g(n) and f(n) are decreasing convex functions of n for all 0 < c < 1.

We first show that there exists some c1, supposedly to be a small number close to 0, such

that when 0 < c < c1, f(n) < g(n), so that P ∗ increases in n for all n ≥ 3. It is hard to

(analytically) directly solve the inequality and find c1, but we can inspect the values of f(n)

and g(n) when c → 0. Indeed, we can show that f(n) < g(n) for all n ≥ 3 when c → 0 by
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the following arguments.

First note that when c → 0, g(n) → − log( 0
∞−1

) = − log(0) = ∞, while

f(n) =
n

(n− 1)2

(
1
c

) 1
n−1(

1
c

) 1
n−1 + c− 1

log(
1

c
) → ∞.

Thus we can use L’Hospital’s Rule to prove f(n)
g(n)

< 1 when c → 0. Transforming the

inequality, f(n)
g(n)

< 1 is equivalent to

n

(n− 1)2

 (
1
c

) 1
n−1(

1
c

) 1
n−1 + c− 1


 log(1

c
)

− log( c

( 1
c)

1
n−1+c−1

)

 < 1.

When c → 0,

(
( 1
c)

1
n−1

( 1
c)

1
n−1+c−1

)
→ 1, while both log(1

c
) → ∞ and − log( c

( 1
c)

1
n−1+c−1

) → ∞.

Using L’Hospital’s Rule twice for the second bracketed term here, one gets:

log(1
c
)

− log( c

( 1
c)

1
n−1+c−1

)
→ n− 1− (c)

n
n−1 (n− 1)2

n
→ n− 1

n
.

Thus
f(n)

g(n)
→ n

(n− 1)2
n− 1

n
=

1

n− 1
< 1, when c → 0, for all n ≥ 3.

Now that f(n) < g(n) holds strictly for all n ≥ 3 when c → 0, and also f(n) and g(n) are

continuous in the parameter c for all 0 < c < 1, there must exist some c1 > 0, supposedly

small, such that f(n) < g(n) for all 0 < c < c1. The proof is now complete for this case.

Next, we show that there exists some c2 > c1 such that for c1 < c < c2, there exists some

ñ such that f(n) > g(n) for n < ñ and f(n) < g(n) for n > ñ, so P ∗ decreases in n first and

increases in n thereafter. We need three steps. First, we can show f(2) > g(2) to be always

true. Second, we can show f(n), g(n) → 0 when n → ∞. Third, we want to show that f(n)

and g(n) cross exactly once when n increases from 2 to infinity.

To show the third step, we can do the following. We can show f ′(2) < g′(2) and f ′(∞) >

g′(∞) when c is sufficiently small. Then since f(n) and g(n) are smooth convex functions,

their derivatives f ′(n) and g′(n) must cross at least once when n increases from 2 to infinity.
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Suppose they last cross at n∗, which implies 0 > f ′(n) > g′(n) for all n > n∗. Now

that f(∞) = g(∞) = 0, and g decreases faster than f for all n > n∗, it must be that

f (n) < g (n) for all n ≥ n∗. Now that we have f(2) > g(2), f (n) < g (n) for all n ≥ n∗, and

f(∞) = g(∞) = 0, combined with the fact that f and g are smooth convex functions, we

can conclude that f and g cross only once at some ñ smaller than n∗. And the proof should

be complete for this case. Therefore, we need to prove the following: (i) f(2) > g(2); (ii)

f(∞) = g(∞) = 0; (iii) f ′(2) < g′(2) and f ′(∞) > g′(∞) when c is sufficiently small. Now

let us do it step by step.

(i) f(2) > g(2), i.e., we want to show
2( 1

c)
2
log( 1

c
)(

( 1
c)

2
+1− 1

c

) > − log( 1

( 1
c)

2
+1− 1

c

). Let a = 1
c
>

1. We want to show 2a2 log(a)
(a2+1−a)

> − log( 1
a2+1−a

) = log(a2 + 1 − a), that is, 2a2 log(a) −

(a2 + 1− a) log(a2 +1− a) > 0, that is, a2 log(a2)− (a2 + 1− a) log(a2 +1− a) > 0. Notice

the function x log(x) is increasing in x. Since a = 1
c
> 1, so a2 > a2 + 1 − a, and thus

a2 log(a2) > (a2 + 1− a) log(a2 + 1− a), and the inequality is proved.

(ii) f(∞) = g(∞) = 0. When n → ∞, since
(
1
c

) 1
n−1 →

(
1
c

)0
= 1,

f(n) =
n
(
1
c

) 1
n−1 log(1

c
)

(n− 1)2
((

1
c

) 1
n−1 + c− 1

) → 0,

g(n) = − log(
c(

1
c

) 1
n−1 + c− 1

) → − log(
c

c
) = 0.

(iii) f ′(2) < g′(2) and f ′(∞) > g′(∞) when c is sufficiently small. Since f ′ < 0 and

g′ < 0, we want to show f ′(2)
g′(2)

> 1 and f ′(∞)
g′(∞)

< 1.

f ′(n)

g′(n)
=

n2 − 1 +
(c−1) log( 1

c
)

( 1
c)

1
n−1+c−1

n

(n− 1)2
.

So
f ′(n)

g′(n)
> / < 1 ⇐⇒ n2 − 1 +

(c− 1) log(1
c
)(

1
c

) 1
n−1 + c− 1

n > / < (n− 1)2 ⇐⇒

2n− 2 > / <
(1− c) log(1

c
)(

1
c

) 1
n−1 + c− 1

n ⇐⇒ n

2−
(1− c) log(1

c
)(

1
c

) 1
n−1 + c− 1

 > / < 2.
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When n = 2, we can show
(1−c) log( 1

c
)

1
c
+c−1

< 1 for all c, so 2

(
2− (1−c) log( 1

c
)

( 1
c)+c−1

)
> 2 and thus

f ′(2)
g′(2)

> 1 for all c. The proof goes as follows. Let b = 1
c
> 1, then

(1−c) log( 1
c
)

1
c
+c−1

=
(1− 1

b ) log(b)
b+ 1

b
−1

. We

want to show
(1− 1

b ) log(b)
b+ 1

b
−1

< 1 ⇐⇒
(
1− 1

b

)
log(b) < b+ 1

b
−1 ⇐⇒ (b−1) log(b) < b2−b+1 =

b(b− 1) + 1. Notice log(b) < b for all b > 1, thus (b− 1) log(b) < b(b− 1) < b(b− 1) + 1, and
(1−c) log( 1

c
)

1
c
+c−1

< 1 is proved. Thus we have shown f ′(2) < g′(2) for all c.

Now examine the case of n → ∞. Recall f ′(n)
g′(n)

< 1 if

(
2− (1−c) log( 1

c
)

( 1
c)

1
n−1+c−1

)
n < 2, and

when n → ∞, the LHS goes to either ∞ or −∞ depending on the sign of the constant(
2− (1−c) log( 1

c
)

( 1
c)

1
n−1+c−1

)
. Since

(
1
c

) 1
∞ → 1, so 2 − (1−c) log( 1

c
)

( 1
c)

1
n−1+c−1

→ 2 − (1−c) log( 1
c
)

c
, and thus we

need to examine the sign of this expression with respect to c. Notice that the derivative of
(1−c) log( 1

c
)

c
with respect to c is

−1+c−log( 1
c
)

c2
< 0, so it decreases in c. When c → 0,

(1−c) log( 1
c
)

c
→

log(∞)
0

= ∞. When c → 1,
(1−c) log( 1

c
)

c
= 0. Due to monotonicity, there exists some c2 > 0 such

that
(1−c2) log(

1
c2

)

c2
= 2. And for all c < c2,

(1−c) log( 1
c
)

c
> 2, so limn→∞

(
2− (1−c) log( 1

c
)

( 1
c)

1
n−1+c−1

)
< 0

and thus

(
2− (1−c) log( 1

c
)

( 1
c)

1
n−1+c−1

)
n → −∞, so f ′(∞)

g′(∞)
< 1, or f ′(∞) > g′(∞). Vice versa, for all

c > c2,
f ′(∞)
g′(∞)

> 1, or f ′(∞) < g′(∞).

Now that for c < c2, we have shown (i)(ii)(iii) for c < c2. Still, we need to verify that

c1 < c2. Recall that c1 is a number any close to zero such that when 0 < c < c1, we have

f(n) < g(n) for all n ≥ 3 given that (1) limc→0 f(n; c) < limc→0 g(n; c) for all n ≥ 3 and (2)

f(n; c), g(n; c) are continuous in c. Therefore, we only need to verify that f(n) > g(n) for all

n ≥ 3 at c2, and then by definition c1 < c2. Recall c2 is defined implicitly by
(1−c2) log(

1
c2

)

c2
= 2,

which can be solved by numerical approximation to be c2 ≈ 0.3464, and by simulation one

can easily see that f(n) > g(n) for all n ≥ 3 at c2 ≈ 0.3464, so it follows that c1 < c2.

Lastly, note that the proof stated above leads to the conclusion that P ∗ decreases in n first

and increases in n thereafter for all c < c2, including those c < c1, but this does not conflict

with the first case. The reasoning we followed so far points to the intuition that for P ∗

to exhibit an increasing interval with respect to n, a smaller c is more favorable. In fact,

when c < c1 < c2, it can be seen by simulation that the threshold dividing the decreasing

and increasing parts of P ∗(n) is less than 3, meaning P ∗ only decreases before n = 3 and
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increases for all n ≥ 3, so there is no conflict between 3.(i) and 3.(ii) of Theorem 3.

Lastly, we need to prove the third case, i.e., that P ∗ decreases for all n ≥ 3 when c > c2.

In the second case, we have already proved that f(2) > g(2), f(∞) = g(∞) = 0, f ′(2) < g′(2)

for all c, and f ′(∞) < g′(∞) when c > c2 (the other case). For smooth convex functions

f(n) and g(n) it is only possible that f(n) > g(n) for all n ≥ 2 (which is confirmed by

simulation), though in Theorem 3 we relaxed it to n ≥ 3 for consistency. So 3.(iii) is proved,

and the proof is complete. Q.E.D
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