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Abstract

This paper studies a standard model of the private provision of public goods under

the assumption that the public good is either normal or inferior for every consumer at

every level of wealth. Using new tools from monotone comparative statics, we show that

the condition of normality (inferiority) of public good is sufficient for the extremal total

equilibria contributions to be increasing (decreasing) with the number of consumers. The

lattice-theoretic methodology we use also allows us to generalize the classic existence result

by showing that the assumption of quasi-concavity of the utility function is not “critical”

and therefore can be relaxed.
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1 Introduction

The theory of voluntary provision of public goods has received growing attention after the

publication of Samuelson’s (1954; 1955) seminal works. Since then the theory has been discussed

in Olson (1965), McGuire (1974), Laffont (1988), Warr (1982, 1983), Bergstrom et al. (1986),

Varian (1994), Kerschbamer and Puppe (1998), Gaube (2000, 2001) and others. One of the

most striking results was obtained in Bergstrom et al. (1986), where the condition of normality

of both private and public goods for every individual in the economy was proved to be sufficient

for the uniqueness of Nash equilibrium. Important contributions to the theory have also been

made by Cornes and Sandler (1984a,b, 1994, 1996). They noticed that Nash equilibrium is

generally not efficient (in the sense that contribution to the amount of public good according

to Nash equilibrium outcome is less than the one which is Pareto efficient). Since then much

attention has been engaged to the search for possible solutions that would overcome under-

provision (which is considered as a sign of market failure and a justification for government

intervention).

Many works have also been concerned with the problem of free-riding (or easy riding, as

Cornes and Sandler call it, since the individuals contribute less rather than not contribute at

all) and the exacerbation of this tendency as the group size increases. It is a widely accepted

hypothesis that when the public good is voluntarily provided, incentives to free ride increase

with the number of individuals (Olson, 1965; Laffont, 1988; Mueller, 1989; Sandler, 1992).

But this claim has been usually illustrated only by means of examples of Cobb-Douglas and

quasilinear utility functions. Gaube (2001) found that sufficient conditions for this general

presumption to hold are conditions for both public and private goods to be strictly normal and

weak gross substitutes.

Another important issue in the theory of public goods is whether a sequential model of

private provision leads to greater or lesser contribution than a simultaneous move game. Var-

ian (1994) studies both models and shows that under the condition that the public good is

normal, the total contribution to the public good in a sequential game is never larger than in

a simultaneous-move game.

All in all, the assumption of normality of both goods for all consumers is easily seen to be
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standard in the theory of private provision of public goods. The purpose of the present paper

is to see whether this assumption, widely used in the theory, allows us to derive unambiguous

comparative statics conclusions. In addition, the public good in many scenarios may be better

characterized by its inferiority instead of normality (e.g., some public parks are mostly utilized

by the homeless). So the second part of this paper also considers a novel case of an inferior

public good and a normal private good. The paper provides a thorough comparative statics

analysis for the traditional model of voluntary provision of public goods when it is normal and

when it is inferior. More precisely, we investigate the question of how the equilibria outcomes,

namely equilibrium per-consumer consumption of the private good, equilibrium per-consumer

contribution to the public good, and the total equilibrium supply of the public good change

when the group size increases.

The comparative statics analysis presented in this paper relies on a new monotone com-

parative statics approach based on lattice-theoretic methods. This approach is widely known

as having advantages over traditional methods based on the Implicit Function Theorem and

signing derivatives. Lattice-theoretic methods were developed by Topkis (1978, 1979), Vives

(1990), further analyzed by Milgrom and Roberts (1990, 1994), Milgrom and Shannon (1994),

Amir and Lambson (2000), Amir (1996b, 2003). Its main feature consists of utilizing only a

subset of the assumptions needed for the standard approach which, as a result, demonstrates

that not all traditional assumptions are ’critical’ for the comparative statics. It also helps to

understand the economic meaning rather than to be focused on the mathematical assumptions.

Furthermore, compared to the traditional approach, it does not give rise to statements that are

not always well-defined (by dealing only with the extremal equilibria).

The approach we use leads to unambiguous, meaningful statements about comparative

statics issues. It also allows for some generalization of the existing results in the literature

on public goods. For example, sufficient conditions for the uniqueness of Nash equilibrium

(Bergstrom et al., 1986) and the exacerbation of free riding (Gaube, 2001) were obtained under

the standard assumption of quasi-concavity of the utility function. Applying new tools from

lattice-theoretic methodology, we are able to obtain these results without necessarily imposing

this assumption. We show that this assumption is not ‘critical’ and can be relaxed and these

results will still be valid.
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Most of the theoretical and experimental work on public goods normally deals with a simple

model in which a single pure public good is supplied and consumers are concerned only about

their private consumption and the total supply of the public good. We use a simple version

of this model due to Bergstrom et al. (1986). The economy has n consumers and two goods

(one public and one private). We first generalize the Nash equilibrium existence result from

Bergstrom et al. (1986), which was obtained under the assumptions that both public and

private goods are normal and the utility function is strictly quasi-concave. We show that the

assumption of normality of public good is sufficient to prove the existence. Then we analyze how

the equilibria variables change with the number of consumers. It turns out that the normality of

the public good is a sufficient condition for the total equilibrium contribution to the public good

to be increasing, whereas for the individual contribution to the public good to be decreasing

with n, we need to assume the normality of the private good as well. Indeed, the normality

or inferiority of the private good is the key determinant for the individual contribution to be

decreasing or increasing in n, thus a key factor to affect the free-riding incentives. On the other

hand, the normality or inferiority of the public good determines the comparative statics of the

total contribution in n, thus related to the overall success or failure of the private provision of

public goods.

The rest of the paper is organized as follows. We present the model in Section 2. The case

with normal public good is analyzed in Section 3, and the case with inferior public good is

analyzed in Section 4. Section 5 concludes. All proofs are contained in the Appendix.

2 The Model

This section describes a simple model of the private provision of public goods with one public

good, one private good, and n consumers. The main question is how the equilibria variables

change with the number of consumers. The approach we use to answer the question is based

on fundamental results from supermodular theory. First, we introduce some basic notation.

Each consumer i consumes an amount xi of private good and contributes an amount of

yi ≥ 0 to the supply of public good. The total contribution of all consumers is denoted by z,

z =
∑n

i=1 yi, which is used for the production of the public good. The output of the public good
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is then given by c = f(z), where f(z) can be interpreted as a production function. The utility

function of consumer i is ui(xi, c), who is endowed with wealth w. We assume that utility is

twice-continuously differentiable. The price of the private good is p, whereas the price of the

public good is normalized to 1. The sum of contributions to the public good by all consumers

other than i will be denoted by y−i. Given the voluntary contributions y−i of other consumers,

consumer i solves the maximization problem for utility function ui(xi, c).

Definition 1. A Nash Equilibrium for the model of private provision of the public good is a

vector of contributions y∗i , i = 1, ..., n, such that for each i, (x∗
i , y

∗
i ) is a solution to the following

utility maximization problem

max
xi,yi

U i(xi, c)

s.t. pxi + yi = w

c = f(yi + y∗−i)

xi ≥ 0, yi ≥ 0

In a game with n consumers, we use the upper script n to denote the equilibrium level

of variables. That is, let xn
i be the equilibrium level of consumption of the private good for

consumer i, yni be the equilibrium level of contribution to the public good for consumer i, etc.

When there is no risk of confusion, we use the same notations, xn
i , y

n
i , y

n
−i, z

n, etc., to denote the

equilibria set of variables, if the uniqueness of equilibrium is not guaranteed. In such cases, we

use an upper and a lower bar in the notation of equilibria variable sets to denote the maximal

and minimal elements of the sets, i.e., the maximal and minimal equilibria, correspondingly. We

aim to predict the direction of changes in these extremal equilibria as the number of consumers

changes. In addition, let Vi(w, y−i) be the indirect utility function of consumer i, given wealth

w and other consumers’ contribution y−i, where

Vi(w, y−i) = max
0≤yi≤w

U i(
1

p
(w − yi), f(yi + y−i)). (1)

By choosing his own contribution yi, a consumer is also choosing the total contribution z =
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y−i + yi, given other (n− 1) consumers contributing y−i in total. Therefore, the maximization

problem can be rewritten as follows:

max
y−i≤z≤w+y−i

U i(
1

p
(w + y−i − z), f(z)). (2)

The following assumptions are valid throughout the paper:

(A0) f(z) is strictly increasing.

(A1) U i(xi, c) is twice continuously differentiable with U i
1, U

i
2 > 0.

(A2) (Normality of the private good) U i
2U

i
21 − U i

1U
i
22 −

f ′′

(f ′)2
U i
1U

i
2 > 0.

We note that the only requirements of the utility function are twice continuously differen-

tiability (to use the Monotonocity Theorem in Milgrom and Shannon, 1994) and monotonicity.

The utility function does not necessarily need to be quasi-concave. In fact, our main results

are still valid with a convex production function f(z) and U i that is not quasi-concave. Under

assumption (A2), the private good is normal (see Lemma 2 in the Appendix). However, this

assumption is not needed in the case of a normal public good for our main results concerning

the equilibrium existence and the comparative statics of the total contribution of the public

good (Propositions 1 and 2), but is needed in this case to characterize the equilibrium individ-

ual contribution of the public good (Proposition 3), and is crucial for the general arguments

with the inferiority of the public good. It is a plausible assumption given the fact that xi

is representative of an average private good, as the consumer only consumes two goods (the

private and the public goods). In addition to the usual normality requirements on U i (with

respect to U i
2U

i
21 − U i

1U
i
22), we need the production function f to be not too convex, which is

naturally satisfied in view of f being a concave function in the usual case. The relaxation of

this assumption, as will be discussed below, combined with the normality of the public good

will give rise to each consumer’s contribution of the public good to increase in n, and thus the

consumption of the private good to decrease in n.

Remark. The results of the paper are applicable for a setting with n firms, where the

production function of some firm i depends on a private input xi of good 1 and some input z

of good 2, with z = yi + y−i, so that each firm uses not only its private input yi of good 2 but

also what is available from others’ input.
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3 The case with the normality of the public good

In this section, we consider the case when the normality of the public good holds for every

consumer i, i = 1, ..., n. We show that the normality is guaranteed by the following assumption

(A3), which further ensures that the utility function (2) has the strict single-crossing property

(Milgrom and Shannon, 1994) on (z, y−i), thus implying that the extremal total equilibrium

contributions to the public good, z̄n and zn, are increasing in the number of consumers.

(A3) (Normality of the public good) U i
1U

i
21 − U i

2U
i
11 > 0.

The first proposition establishes the existence of a Nash equilibrium and that it is always

symmetric.

Proposition 1. With the normality of the public good (A3), there exists a symmetric Nash

Equilibrium, and no asymmetric equilibria exist.

The existence result obtained by Bergstrom et al. (1986) assumes strict convexity of pref-

erences of every consumer, which implies quasi-concavity of the utility function. Proposition

1 shows that, if the normality of the public good is assumed, the existence of Nash equilib-

rium can be proved even if the utility function is everywhere convex. The proof is based on

the observation, initially proposed by Amir and Lambson (2000), that under the condition of

normality of public good, every selection of the best-response correspondence z∗(y−i) is strictly

increasing in y−i, which allows us to use Tarski’s fixed-point theorem and to guarantee that

every equilibrium is symmetric. Also note that the assumption (A2) for the normality of the

private good is not needed here for the existence and symmetry of the Nash Equilibrium.

In addition to the existence and symmetry results, the following Proposition establishes,

among other comparative statics results, that the normality of the public good also guarantees

that the total maximal and minimal equilibria contributions to the public good are increasing

in the number of consumers.

Proposition 2. With the normality of the public good (A3), the following hold:

1. The extremal equilibrium joint contributions of (n− 1) consumers to the public good, ȳn−i

and yn−i
, are increasing in n.
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2. The extremal equilibrium total contribution of all consumers to the public good, z̄n and

zn, are increasing in n.

3. The extremal values of indirect utility functions, V̄ n
i and V n

i , are increasing in n.

This Proposition, though, does not say anything about how the extremal individual con-

tributions, ȳni and yn
i
vary with n. However, the direction of change depends on whether the

private good is normal or inferior. Under the normality of the private good as assumed in

(A2), we can prove the uniqueness of equilibrium and that the individual contribution ȳni is

decreasing in n.

Proposition 3. With the normality of both the private good (A2) and public good (A3), there

exists a unique and symmetric Nash Equilibrium, with per-consumer equilibrium contribution

yni decreasing in n and equilibrium consumption of the private good xn
i increasing in n.

Proposition 3 presents an alternative proof to the uniqueness result, originally obtained

in Bergstrom et al. (1986) and establishes that when both goods are normal, per-consumer

maximal and minimal equilibria contributions to the public good are decreasing in the number

of consumers. The proof is based on the fact that the normality of both goods implies that

every selection of the reaction correspondences y∗i (y−i) has slopes within [0,−1] everywhere,

which in turn leads to the uniqueness of equilibrium. On the other hand, the fact that the

reaction curves are decreasing (with slopes not greater than 0) is sufficient for the comparative

statics results for yni , and xn
i = 1

p
(w − yni ), given yn−i increasing in n.

Remark. In a less plausible, but theoretically meaningful case where the private good xi is

inferior, an analogue to Lemma 2 implies that the utility function U i(1
p
(w−yi), f(yi+y−i)) will

have the strict SCP on (−yi;−y−i), meaning the extremal (all) selections of the best-response

correspondence y∗(y−i) are increasing by the Monotone Selection Theorem in Milgrom and

Shannon (1994). In this case, the uniqueness of equilibrium no longer holds, but it is easily

verified that the extremal per-consumer equilibrium contribution ȳni and yn
i
will be increasing in

n, and the extremal equilibrium consumption of the private good x̄n
i and xn

i will be decreasing

in n, as a direct implication of ȳn−i and yn−i
being increasing in n (Proposition 2). In other

words, the comparative statics of the private consumption xn
i in the group size n depends on

whether the private good is normal or inferior.
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We conclude this section with a simple example, which shows that the existence result can

hold even if the utility function is not quasi-concave, and thus this assumption required by

Bergstrom et al. (1986) can indeed be relaxed.

Example 1. Consider the utility function U i(xi, c) = xi +
√
c, which is a strictly quasi-

concave function. Now let us assume the production function to be f(z) = z2. By incorporating

the production function, the utility function becomes U i(xi, f(z)) = xi + z, which is no longer

quasi-concave. But Proposition 1 affirms that an equilibrium still exists, and it is symmetric.

Indeed, it is easy to check that the maximization problem

max (xi + yi + y−i)

s.t. pxi + yi = w, xi > 0, yi > 0

has the following unique solution for any p > 1: the dominant strategy of each consumer i,

given any y−i, is x∗
i = 0 and y∗i = w, i = 1, ..., n. So the unique equilibrium is a symmetric

one with every consumer contributing w to the public good. Furthermore, we have the total

equilibrium contribution zn = nw and the optimal utility V n
i = nw, which is increasing in n,

so the results of Proposition 2 are confirmed.

4 The case with the inferiority of the public good

In some realistic scenarios, the public good may assume some features of an inferior good, such

as public parks in certain local areas where it is lower-income families or the homeless that

are mostly seen using the parks. In many cities, free public buses or fitness facilities are also

overwhelmingly utilized by the financially strained population or tourists. That is, there is

reduced consumption of certain public goods when the agents become wealthier.

(A3’) (Inferiority of the public good) U i
1U

i
21 − U i

2U
i
11 < 0.

In this section, we provide results for the case of an inferior public good. The inferiority is

guaranteed by assumption A3’, along with an assumption that the consumer is wealthy enough

that she consumes and contributes a positive amount of the private good and the public good at

her lowest wealth level (when no other consumers contribute to y). The latter guarantees that
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the solution is interior at the lowest wealth level, circumventing some possible violation to the

inferiority (i.e., the consumer will contribute all wealth to the public good without consuming

any private good) due to tight budget constraints at low wealth levels, which is by no means a

central scenario to our problem. The major implication from the inferiority of the public good

is that the utility function U i(1
p
(w+y−i−z), f(z)) has the single-crossing property on (z;−y−i)

(as proved in Lemma 3), implying that the best response z∗(y−i) is now decreasing in y−i, which

means that the per-consumer contribution y∗(y−i) decreases quite rapidly, at slopes less than

−1, in other (n − 1) consumers’ contributions to the public good. Standard lattice-theoretic

methods do not guarantee the existence of equilibrium in such submodular games. However, we

are able to show that given the normality of the private good (A2),1 a “single-player provision”

equilibrium always exists, where only one consumer contributes to the public good while other

consumers do not contribute at all, and this constitutes a mutually best-responding equilibrium.

Besides, we show that other equilibria, upon existence, always have the form of m consumers

contributing the same amount to the public good while other consumers do not contribute at

all, 2 ≤ m ≤ n, and no other forms of equilibria besides this can exist. That is, the equilibrium

contribution is always symmetric for those active contributors, though non-contributors are

allowed to exist.

In addition to the existence arguments, the lattice-theoretic methods also give rise to clear-

cut predictions for the comparative statics with respect to the group size n, whenever the

equilibrium exists. The major flip of results, by having inferiority of the public good instead of

normality, is that the total equilibrium contribution zn now decreases in n. This means that

the free-riding issue compounds with the non-excludability and inferiority of the public good,

so that a larger group size may lead to the failure of the public good provision.

Before we state the next Proposition, we need an additional assumption on the utility

function to ensure that a consumer has the incentive to donate a positive amount of the public

good if no other consumers donate any amount at all. A sufficient condition is that the utility

function has a positive partial derivative with respect to yi at yi = 0 and y−i = 0, as stated in the

1Since pxi + yi = w, the inferiority of the public implies the normality of the private good. However, the
latter does not always guarantee the second-order conditions over U i and f(z) as stated in A2 to hold, except
when xi is interior where the first-order condition holds. Therefore, we still need assumption A2 for U i’s SCP
in (−yi; y−i).
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following assumption A4. Hence A4 rules out the possibility of a no-contribution equilibrium

and is thus needed for the existence of a single-player provision equilibrium. If otherwise we

have 0 ∈ argmax{U i(1
p
(w − yi), f(yi)) : 0 ≤ yi ≤ w}, then it is easily verified that a trivial

equilibrium always exists where no player contributes at all, thus leading to a failure of the

public good provision.

(A4) −1
p
U i
1(

w
p
, f(0)) + U i

2(
w
p
, f(0))f ′(0) > 0.

The next Proposition shows the existence of a single-player provision equilibrium and char-

acterizes other possible equilibria.

Proposition 4. With the normality of the private good (A2), the inferiority of the public good

(A3’) and (A4), the following hold:

1. There always exists an equilibrium in which one consumer contributes a positive amount

to the public good and other (n− 1) consumers do not contribute at all.

2. Whenever a symmetric equilibrium exists in an m-player game, for some m < n, it must

be unique, and it also constitutes an equilibrium for the n-player game, with the other (n−m)

consumers contributing nothing to the public good.

3. No such equilibrium exists where two active contributors (i.e., yi > 0) have different

levels of contribution to the public good.

The second result of Proposition 4 implies that a symmetric m-player equilibrium, upon

existence, is invariant to n. That is, if more players join the game, it still constitutes an

equilibrium where the same set ofm players contributes the same amount, while the new players

completely free-ride on existing contributions. The next Proposition gives the comparative

statics with respect to n.

Proposition 5. Under the same assumptions of Proposition 4, whenever the symmetric equi-

librium exists for m players and for n players, n > m, we have

yn−i > ym−i, and yni < ymi , zn < zm, V n
i > V m

i .

Next, let us give an example of an inferior public good and a normal private good to show

the comparative static results and the existence of a single-player contribution equilibrium.
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Example 2. Suppose the production function is f(z) = z, and the utility function is

U i = ln(f(yi + y−i)− a)− 2 ln(b− xi), then the maximization problem is

max
xi,yi

U i = ln(yi + y−i − a)− 2 ln(b− xi)

s.t. pxi + yi = w, 0 < xi < b, 0 < yi < a

First, one can verify that U i
1U

i
21 − U i

2U
i
11 < 0, hence y is an inferior good.2 The assumption

A2 can also be verified with ease. Whenever w ∈ ( a
n
+ bp

2n
, a
n
+ bp), a symmetric equilibrium

exists where y∗ has an interior solution in (w − bp, w) derived from the first-order condition,

which is decreasing in w and y−i, as follows:

y∗(y−i) = 2a+ bp− w − 2y−i.

The symmetric equilibrium is defined by y∗(y−i) = y−i/(n− 1), so the equilibrium level of y−i

is yn−i =
n−1
2n−1

(2a + bp − w), which is increasing in n for n ≥ 2. The equilibrium individual

contribution is yni = 1
2n−1

(2a + bp − w) and the total contribution is zn = n
2n−1

(2a + bp − w),

both decreasing in n, as ∂zn

∂n
= −1

(2n−1)2
(2a+ bp−w) < 0. The main takeaway from this example

is thus that not only the individual contribution, but also the total contribution to the public

good, will decrease when adding more players to the game if the public good is inferior, as

opposed to the case of a normal public good. Lastly, notice that if y−i = 0, then the best

response implies y∗(0) = 2a + bp − w < w, so the consumer will contribute 2a + bp − w

to the public good if no other consumer contributes anything, and for the latter consumer

y∗(2a + bp − w) = 2a + bp − w − 2(2a + bp − w) < 0, so he will best respond by contributing

nothing, and this constitutes a single-player contribution equilibrium, given that the function

is well-defined at the points yi = 2a+ bp− w, y−i = 0 and yi = 0, y−i = 2a+ bp− w.3

2The logarithm function requires yi > w−bp for xi < b, so that when y∗ coincides with the lowest bound (given
it is greater than 0) it increases in w. Nevertheless we do not consider this functional boundary requirement as
a violation of the inferiority of y in this specific example.

3The function is well-defined for this single-player contribution equilibrium, namely that 0 < yi = 2a+ bp−
w < w and w − bp < yi = 0 < w and yi + y−i = 2a+ bp− w > a, if − bp

2 < a < 0 and a+ bp
2 < w < 2a+ bp.
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5 Conclusion

This paper studies the group size effects in a simple model of private provision of public goods.

A major finding of this paper is that the use of the new tools from monotone comparative

statics allows us to relax a standard assumption of quasi-concavity of the utility function and

to find that the assumption of normality of public good for every consumer and every level of

wealth is a sufficient condition for the total contribution to the public good to be increasing

with the number of agents. If the public good is instead inferior, combined with the normality

of the private good we show that the comparative statics of the total contribution in the group

size flips to be decreasing.
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Appendix A1. Proofs

This section provides all the proofs of the paper. First, we introduce some notations that are

relevant throughout the proof. A consumer i’s best-response correspondence is defined by

y∗(y−i;w) = argmax{U i(
1

p
(w − yi), f(yi + y−i)) : 0 ≤ yi ≤ w}, (3)

where y−i ∈ [0, (n− 1)w].

Alternatively, one may think of a consumer as choosing the total contribution z of the public

good, given (n−1) other consumers’ total contribution y−i. So the best-response correspondence
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in (3) can be rewritten in terms of z as follows:

z∗(y−i;w) = argmax{U i(
1

p
(w + y−i − z), f(z)) : y−i ≤ z ≤ y−i + w}. (4)

As we consider homogeneous consumers here, each consumer has the same utility function, so

that their best-response correspondences y∗(y−i;w) and z∗(y−i;w) are also the same. Then, as

in Amir and Lambson (2000), we introduce the following mapping based on the best-response

correspondence (3):

Bn : [0, (n− 1)w] → 2[0,(n−1)w],

y−i →
n− 1

n
(y′i + y−i),

where y′i denotes a best-response level of consumer i’s contribution of the public good when

the total contribution of other (n − 1) consumers is y−i, i.e., y′i ∈ y∗(y−i). The combined

conditions of yi ∈ [0, w] and y−i ∈ [0, (n− 1)w] guarantee that Bn maps some y−i into the same

space [0, (n− 1)w]. The mapping Bn is of particular importance while dealing with symmetric

equilibria. Indeed, any fixed-point of Bn yields a symmetric Nash equilibrium, as it satisfies

y−i =
n−1
n
(y′i + y−i), or y

′
i =

1
n−1

y−i, which means that every consumer donates the same level

of the public good.

Next, we establish two important results that connect the normality (inferiority) of the

goods to the supermodularity (submodularity) of the game.

Lemma 1. If A3 holds, then the public good is normal, and the utility function U i(1
p
(w+ y−i−

z), f(z)) has the strict single-crossing property in (z; y−i).

Proof. Inspect the utility functions U i(1
p
(w−yi), f(yi+y−i)) and U i(1

p
(w+y−i−z), f(z)),

noting that the latter is derived by replacing yi = z − y−i. Now we want to show that U i
1U

i
21 −

U i
2U

i
11 > 0 implies that U i has the single-crossing property (SCP) as defined in Milgrom and

Shannon (1994) in (yi;w), and that U i in the latter form also has the SCP in (z; y−i). We prove

this by the method of dissection. Let Ũ(x, y, t) = U i(1
p
(t− x), y) and h(x) = f(x+ y−i). Note

that Ũ is completely regular with Ũy = U i
2 > 0. And Ũx/|Ũy| = −U i

1

pU i
2
, which is strictly increasing

in t if and only if U i
1U

i
21−U i

2U
i
11 > 0. Therefore, Ũ satisfies the strict Spence-Mirrlees condition
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and by Theorem 11 in Milgrom and Shannon (1994), U i(1
p
(t−x), f(x+ y−i)) satisfies the strict

SCP in (x; t), whereas h(x) = f(x+ y−i) can be deemed coming from the richly parameterized

family {f(x+y−i)+α1x+α0 : α1, α0 ∈ R} with α1 = α0 = 0. Replacing t by w and x by yi, we

have shown that U i has the strict SCP in (yi;w). The procedure to verify that U i in the latter

form has the strict SCP in (z; y−i) is similar, if one lets Ũ(x, y, t) = U i(1
p
(m + t − x), y) and

h(x) = f(x). Now that constraint set yi ∈ [0, w] is ascending in w, and U i has the strict SCP

in (yi;w), by the Monotone Selection Theorem in Milgrom and Shannon (1994), given any y−i,

every selection y∗ from the utility maximization (3) is increasing in w, so the normality of y is

verified. Q.E.D.

Lemma 2. If A2 holds, then the private good is normal, and the utility function U i(1
p
(w −

yi), f(yi + y−i)) has the strict SCP in (−yi; y−i).

Proof. We use the method of dissection to prove the normality of the private good and the

SCP of U i. Let Ũ(x, y, t) = U i(x, f(t + y)) and h(x) = −px + y−i. Note that Ũ is completely

regular with Ũy = U i
2f

′ > 0. And Ũx/|Ũy| = U i
1

U i
2f

′ , which is strictly increasing in t if and only

if (f ′)2(U i
2U

i
21 − U i

1U
i
22 −

f ′′

(f ′)2
U i
1U

i
2) > 0, which is guaranteed by assumption A2. Therefore,

Ũ satisfies the strict Spence-Mirrlees condition and by Theorem 11 in Milgrom and Shannon

(1994), U i(x, f(t − px + y−i)) satisfies the strict SCP in (x; t), whereas h(x) = −px + y−i

can be deemed coming from the richly parameterized family {α1x + α0 : α1, α0 ∈ R} with

α1 = −p, α0 = y−i. Replacing t by w, we have shown that U i has the strict SCP in (x;w). The

procedure to verify that U i(1
p
(w − yi), f(yi + y−i)) has the strict SCP in (−yi; y−i) is similar,

if one lets x = 1
p
(w − yi), t = y−i and h(x) = −px + w. Now that constraint set x ∈ [0, w

p
]

is ascending in w, and U i has the strict SCP in (x;w), by the Monotone Selection Theorem

in Milgrom and Shannon (1994), every selection x∗ is increasing in w, so the normality of x

is verified. Also note that if the opposite inequality holds for A2 and when the public good is

normal (A3), it follows that the private good is inferior (the arguments are similar to the latter

part of the proof for Lemma 3) and U i has the strict SCP in (−yi;−y−i). Q.E.D.

Lemma 3. If A2 and A3’ hold, then the public good is inferior, and the utility function U i(1
p
(w+

y−i − z), f(z)) has the strict SCP in (z;−y−i).

Proof. Similar to Lemma 1, U i
1U

i
21−U i

2U
i
11 < 0 implies that U i has the SCP in (yi;−w) and
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that U i in the latter form has the SCP in (z;−y−i), by applying the reverse order on w and y−i.

Now we need to show that the public good is inferior, but the Monotone Selection Theorem

cannot be directly applied because the constraint set is ascending. We first show that, whenever

y∗(y−i;w) is continuous in the interior, i.e., y∗(y−i;w) < w, it must be decreasing in w. Suppose

not, then there must exist two points on this continuous part of y∗(w) with its corresponding

rectangular fully enclosed in the action set, i.e., (w1, y1) and (w2, y2) such that w1 < w2, y1 < y2,

and y1 ∈ [0, w2], y2 ∈ [0, w1]. Fixing y−i, write U i(1
p
(w − yi), f(yi + y−i)) simply as U i(yi, w).

Then U i(y2, w2) ≥ U i(y1, w2), and by the strict SCP, U i(y2, w1) > U i(y1, w1), which contradicts

the optimality of y1 at w1. So all the continuous interior parts of y∗(y−i;w) are decreasing in w.

In addition, y∗(y−i;w) cannot jump up, because then x∗(y−i;w) =
1
p
(w − y∗) will be jumping

down at the same w, contradicting the normality of x (by A2). Since we only consider the case

where the consumer will consume and contribute a positive amount of both x and y at the

lowest wealth level (see discussions following assumption A3’), it means y∗(y−i;w) will start at

an interior point, i.e., less than w, at the lowest possible w, and decrease until it hits the lower

boundary 0. Thus the proof is complete for y’s inferiority. Q.E.D.

Proof of Proposition 1

Consider the utility maximization problem (4). First, we show that a symmetric equilibrium

exists. In Lemma 1, we have proved that under the assumption (A3), we have the normality of

public good yi, and the utility function has strict SCP on (z; y−i). In addition, the constraint set

[y−i, y−i +w] is also strictly ascending in y−i. By the Monotone Selection Theorem in Milgrom

and Shannon (1994), every selection of z∗(y−i) is increasing in y−i. Recall that z∗(y−i) =

y∗i (y−i) + y−i. Thus, every selection of Bn is increasing in y−i, for any fixed n. By Tarski’s

fixed-point theorem, Bn has a fixed-point, which is a symmetric Nash equilibrium.

To prove that no asymmetric equilibrium exists, it is sufficient to show that all selections of

z∗(y−i) are strictly increasing in y−i. Indeed, this would mean that at most one y−i corresponds

to each z′ ∈ z∗(y−i), s.t. z′ = y′i + y−i, with y′i being the best-response to y−i. But then, for

each total contribution z′ of public good, each consumer would contribute the same level of

public good y′i = z′ − y−i, where y−i = (n− 1)y′i, implying symmetry in the equilibrium.

Consider an arbitrary selection of z∗(y−i), denoted by z̃. To prove that the mapping y−i →

z∗(y−i) is strictly increasing, let us assume the contrary: there exist some y1−i and y2−i, with
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y1−i > y2−i, such that z̃(y1−i) = z̃(y2−i), while the equality comes from the fact that every selection

of z∗(y−i) has been proved to be increasing. Both z̃(y1−i) and z̃(y2−i) can be without loss of

generality taken to be interior solutions to (4), so each of them satisfies the F.O.C.:

U i
1(
1

p
(w − z + yj−i), f(z))(−

1

p
) + U i

2(
1

p
(w − z + yj−i), f(z))f

′(z) = 0, j = 1, 2,

where z ≡ z̃(y1−i) = z̃(y2−i). Then the F.O.C. implies:

U i
1(
1

p
(w − z + y1−i), f(z))(−

1

p
) + U i

2(
1

p
(w − z + y1−i), f(z))f

′(z)

= U i
1(
1

p
(w − z + y2−i), f(z))(−

1

p
) + U i

2(
1

p
(w − z + y2−i), f(z))f

′(z),

or

− 1

p

U i
1(

1
p
(w − z + y1−i), f(z))− U i

1(
1
p
(w − z + y2−i), f(z))

1
p
(y1−i − y2−i)

+ f ′(z)
U i
2(

1
p
(w − z + y1−i), f(z))− U i

2(
1
p
(w − z + y2−i), f(z))

1
p
(y1−i − y2−i)

= 0.

This holds for all y−i ∈ [y2−i, y
1
−i]. Indeed, as z̃ is increasing, z̃(y−i) = z for all y−i ∈ [y2−i, y

1
−i].

Hence, we can take a limit as y2−i → y1−i (so
1
p
y2−i → 1

p
y1−i), and we get

−1

p
U i
11 + U i

21f
′ = 0 at (y1−i, z). (5)

But this is easily seen to violate the assumption (A3), because if we replace 1
p
= U i

2f
′/U i

1 due

to the F.O.C., −1
p
U i
1 + U i

2f
′ = 0, then (5) implies U i

2U
i
11 − U i

1U
i
21 = 0, which is a contradiction

to (A3). This, in turn, leads us to the conclusion that z̃ is strictly increasing and thus no

asymmetric equilibria can exist. Q.E.D.

Proof of Proposition 2
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1. Consider the mapping introduced above:

Bn : [0, (n− 1)w] → 2[0,(n−1)w],

y−i →
n− 1

n
(y′i + y−i).

By the Monotonicity Theorem in Milgrom and Shannon (1994), the facts that the utility func-

tion is continuous and has the SCP in (z; y−i) and the action set [y−i, y−i + w] is compact and

ascending also guarantee that the maximal and minimal selections of y−i → z∗ in (4) exist. It

means that the maximal and minimal selections of Bn, denoted by B̄n and Bn respectively, also

exist. And it follows from the construction of Bn that the largest equilibrium value of the joint

contribution of n− 1 players, ȳn−i, is also the largest fixed point of B̄n. Since
n−1
n

is increasing

in n, B̄n(y−i) is increasing in n, for every fixed y−i. Then the largest fixed-point of B̄n, which

is ȳn−i, is increasing in n due to Milgrom and Roberts (1990). A similar argument applies to

establishing that yn−i
is increasing in n.

2. Since ȳn−i is increasing in n and every selection of y−i → z∗ is increasing (from the proof

of Proposition 1), the largest total equilibrium contribution to the public good, z̄n, is increasing

in n. Similar arguments apply to zn.

3. The fact that V̄ n
i is increasing in n follows from the fact that ȳn−i is increasing in n and

the property of the indirect utility function, Vi(w, y−i) = max0≤yi≤w U i(1
p
(w − yi), f(yi + y−i)),

to be strictly increasing in other consumers’ joint contribution, as

∂U i

∂y−i

= U i
2f

′ > 0,

by the Envelop Theorem. A similar argument applies to V n
i . Q.E.D.

Proof of Proposition 3

From Lemma 2, we know that assumption A2 implies that U i has the strict SCP in (−yi; y−i).

Since U i with a single decision variable is always quasisupermodular, by Milgrom and Shannon

(1994) we know any selection of −y∗(y−i) is increasing, so any selection of y∗(y−i) has slopes

bounded above by 0. Recall that in the proof of Proposition 1, we have shown that every

selection of z∗(y−i) is increasing, where z∗ = y∗ + y−i, which implies that y∗(y−i) has slopes
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bounded below by −1. We can then conclude that all the slopes of every selection of y∗(y−i) are

in the interval [−1, 0]. To prove the uniqueness of Nash equilibrium, we proceed by contradiction

and suppose that there exist two Nash equilibria. We note that no asymmetric equilibrium can

exist by Proposition 1. Denote by (y, ..., y) and (y′, ..., y′) two symmetric equilibria, y ̸= y′.

Then (n− 1)y ̸= (n− 1)y′. Suppose (n− 1)y > (n− 1)y′, but then y > y′, and the two points

are both Nash Equilibrium thus best responding to y−i, which says that the best-response

function is strictly increasing between the two points ((n−1)y′, y′) and ((n−1)y, y), which can

not be true. This contradiction leads to the conclusion of the uniqueness of the equilibrium.

Alternatively, uniqueness also follows from all the slopes of the best-response curves being in

the interval [−1, 0] by a standard argument presented and proved in Amir (1996a).

Since we have proved in Proposition 1 that the joint contributions of (n− 1) consumers yn−i

are increasing in n, it follows that the per-consumer contribution yni is decreasing in n, due to

the downward sloping of y∗(y−i). So that xn
i = 1

p
(w − yni ) is increasing in n. Q.E.D.

Proof of Proposition 4

The following argument regarding the best-response correspondence y∗(y−i) is crucial to

proving Proposition 4, so we prove this argument first: Under the assumption of normality of

the private good (A2) and inferiority of the public good (A3’), every selection ỹ of y∗(y−i) from

the utility maximization (3) (i) must have slopes no greater than −1 along any continuous part

of itself that is interior of [0, w], and (ii) cannot have upward jumps. The reasoning is similar

to that of Lemma 3, except that the parameter here is y−i stead of w.

Let us fix w. Under the normality of the private good, we have shown that every such

selection ỹ is decreasing in y−i (in the proof of Proposition 3). Specifically, ỹ cannot have

upward jumps (but downward jumps are allowed), so the second part (ii) is proved. Since

z∗ = y∗+y−i, it means any selection z̃ of z∗(y−i) from the utility maximization (4) cannot have

any upward jumps either. Under the inferiority of the public good, Lemma 1 has proved that

U i(1
p
(w+y−i−z), f(z)) has the strict SCP on (z;−y−i). Because the constraint z ∈ [y−i, y−i+w]

is increasing in y−i, so we cannot directly apply the Monotone Selection Theorem. However, for

any part of z̃ that is continuously enclosed in the action space, this part of z̃ must be decreasing.

This is because if there is a continuous part of z̃ contained in the action space, we can always

find two points (y1, z1) and (y2, z2) on z̃ (potentially close enough), z1 = z̃(y1), z2 = z̃(y2)
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such that the rectangular defined by this two points are also contained in the action space, i.e.,

z1 ∈ [y2, y2 + w] and z2 ∈ [y1, y1 + w]. Without loss of generality let y1 < y2, then it must

be that z1 ≥ z2, because otherwise the fact that z2 is preferred to z1 at y−i = y2, would have

implied that at y−i = y1, z2 is (even more) preferred to z1 due to the (reversely ordered) SCP

of U i, which contradicts the optimality of z1 at y−i = y1. Then the fact that any selection of z∗

must be decreasing along any continuous interior part of itself is equivalent to saying that any

selection of y∗ must have slopes no greater than −1 along any continuous interior part of itself,

so the first part (i) of the argument is also proved. In addition, when y−i = 0 the assumption

that y∗(0) < w at the lowest wealth level (see discussions following assumption A3’) implies

that y∗(0) < w for any w, due to its inferiority.

Combining these two facts, we can fully characterize the graph of any selection ỹ from y∗,

that ỹ will decrease from the single-player contribution level y0 ∈ (0, w) (the strict positivity

is guaranteed by A4) at a fast speed with slopes no greater than −1 or with downward jumps,

and once it hits 0, it stays on 0 thereafter because no upward jumps are allowed. It implies

that any two points in the best-response correspondence cannot have a slope greater than −1

unless one (or both) of the points has hit 0 on the horizontal axis, i.e., with ỹ = 0.

1. Now we are ready to prove the existence of of a single-player provision equilibrium where

one consumer contributes to the public good and other (n− 1) consumers do not contribute at

all. Pick some y0 > 0 from the set y∗(0), defined as the individual level of contribution when no

other consumer contributes to the public good whose positivity is guaranteed by assumption

A4, and it suffices to show y∗(y0) = {0}. Suppose not, that there is some y1 ∈ y∗(y0) such that

y1 > 0, then we have two points in the best-response correspondence (0, y0) and (y0, y1) such

that
y1 − y0
y0 − 0

=
y1
y0

− 1 > −1,

which is contradictory to the implication drawn just above. Therefore, a single-player provision

equilibrium always exists with a positive amount of contribution.

2. The existence of a symmetric equilibrium in the n-player game is, however, not guar-

anteed, and such a failure for the existence of fixed points is prototypical for submodular

games. Indeed, as a selection from y∗(y−i) can have downward jumps, it may not intersect
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y−i/(n − 1) for a fixed n, whereas the intersection defines a symmetric equilibrium. However,

upon the existence of such a symmetric equilibrium, it must be unique, in view of the strict

decreasing y∗(y−i) and strictly increasing y−i/(n − 1) which can intersect at most once. Now

assume such a symmetric equilibrium exists for some m < n wherein each consumer contributes

ym > 0 to the public good. Then for the n-player game, m consumers each contributing ym

whereas (n−m) consumers each contributing 0 constitutes an equilibrium. It suffices to show

y∗(mym) = {0}. The proof is similar to the single-player provision case. Suppose not, that

there is some y2 ∈ y∗(mym) such that y2 > 0, then we have two points in the best-response

correspondence ((m− 1)ym, ym) and (mym, y2) such that

y2 − ym
mym − (m− 1)ym

=
y2
ym

− 1 > −1,

which leads to a contradiction.

3. Lastly, we need to prove that in any equilibrium (upon existence), the active contributors

(i.e., with yi > 0) must contribute the same amount of public good. We have shown in the

proof of Proposition 1 that the strict inequality in A3 implies that any selection of z∗(y−i)

must be strictly increasing in its interior part. With an analogous argument, one can show

that the strict inequality in A3’ implies that any selection of z∗(y−i) must be strictly decreasing

whenever z∗(y−i) is above y−i (which coincides with y−i thereafter once it hits y−i). Indeed, if

some selection of z∗(y−i) is not strictly decreasing, then the first-order conditions of two interior

points, selected to have the same z value, would imply ∂2U i

∂yi∂w
= 0 at one of the points, thus

contradicting the strict SCP. Then if any selection of z∗(y−i) is strictly decreasing, one cannot

have two active contributors donating different amounts of public good in the equilibrium,

because then, suppose consumer i donates more than consumer j, yi > yj > 0, then we have

two points in the best-response correspondence, (z− yi, z) and (z− yj, z), with z ≥ yi + yj and

z − yj > z − yi > 0, contradicting the strict decreasing property of z∗(y−i). Q.E.D.

Proof of Proposition 5

Recall that a symmetric equilibrium is defined as the intersection of y∗(y−i) and y−i/(n−1).

We have characterized the graph of any selection of y∗(y−i) to decrease either continuously

with slopes no greater than -1 or discontinuously with downward jumps until it hits 0 and then
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stays at 0 thereafter. Note that y∗(y−i) is not affected by n. On the other hand, y−i/(n − 1)

is a strictly increasing (linear) function of y−i, which rotates clockwise (downwards) when

n increases. Therefore, when the number of players increases from m to n, given that the

y∗(y−i) intersects with both y−i/(m−1) and y−i/(n−1), it is easily seen that the intersection’s

horizontal coordinate, y−i, increases (note that the intersection cannot happen on the horizontal

axis because no-contribution equilibrium is ruled out by assumption A4). Hence yn−i > ym−i.

As any selection of y∗(y−i) decreases strictly in y−i whenever above 0, we have yni < ymi .

For the total contribution z∗, in the proof of Proposition 4(3), we have pointed out that any

selection of z∗(y−i) must be strictly decreasing whenever z∗(y−i) is above y−i (i.e., when y∗ is

above 0). Therefore, we have zn < zm. The last inequality V n
i > V m

i follows from the fact

that the utility function defining Vi strictly increases in other consumers’ joint contribution (see

proof of Proposition 2(3)), so by Envelop Theorem, yn−i > ym−i implies V n
i > V m

i .

Appendix A2. Lattice-Theoretic Results

Here we present the lattice-theoretic notions and results we used in our analysis. For a thorough

discussion of lattice-theoretic methodology the reader is referred to Vives (1990), Topkis (1978,

1979), Milgrom and Roberts (1994).

Let ≥ be a binary relation on a nonempty set S. The pair (S, ≥) is a partially ordered set

if ≥ is reflexive, transitive and antisymmetric. A partially ordered set (S, ≥) is a lattice if any

two elements x and y from S have a least upper bound (supremum), supS(x, y) = inf{z ∈ S :

z ≥ x, z ≤ y}, and a greatest lower bound (infimum), infS(x, y) = sup{z ∈ S : z ≤ x, z ≥ y}.

A lattice (S, ≥) is complete if every nonempty subset of S has a supremum and infimum

on S.

A function g : X → R on the lattice X is supermodular (submodular) if for all x, y in X,

g(inf(x, y)) + g(sup(x, y)) ≥ (≤)g(x) + g(y). (1.1)

The strict supermodularity (submodularity) is defined by a strict inequality in (1.1). For

smooth function supermodularity (submodularity) equivalent to the condition ∂2g(x)
∂xi∂xj

≥ (≤)0, for

all x, y, the results that is known as Topkis’s (1978) Characterization Theorem. Furthermore,
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∂2g(x)
∂xi∂xj

> (<)0 implies that g is strictly supermodular (submodular).

Let ϕ(t) be the interval [ϕ1(t), ϕ2(t)] of reals. ϕ(t) is ascending [descending] in t if ϕ1(t) and

ϕ2(t) are increasing [decreasing] in t. The following theorem states the monotonicity results on

optimal solutions.

Theorem A.1 (Topkis (1978) ) Let g : X×T → R be supermodular (submodular) on the

lattice X for each t in the partially ordered set T , and ϕ(·) is ascending (descending). Then the

maximal and minimal selections of x∗(t) = argmaxx∈ϕ(t){g(x, t)} are increasing (decreasing)

in t. If g is strongly supermodular (submodular), then every selection of x∗(·) is increasing

(decreasing).

This theorem can be extended to purely ordinal complementarity property called ”single

crossing property” (SCP).

A function g has a single-crossing property [dual SCP] in (x, t) if for x′ > x and t′ > t,

g(x′, t) ≥ [≤]g(x, t) implies that g(x′, t′) ≥ [≤]g(x, t′)

The following theorem provides necessary and sufficient conditions for the monotonicity results.

Theorem A.2 (Milgrom-Shannon (1990) ) If g : X × T → R satisfies the SCP

(DSCP), and ϕ(·) is ascending (descending), then the maximal and minimal selections of

x∗(t) = argmaxx∈ϕ(t){g(x, t)} are increasing (decreasing) in t. If g has strict SCP(DSCP),

then every selection of x∗(·) is increasing (decreasing).

The lattice-theoretical fixed-point theorem is due to Tarski (1995).

Theorem A.3. Let (S, ≥) be a complete lattice, f : S → S an increasing function, and E

the set of fixed points of f . Then E is nonempty and E is a complete lattice.

The following result is due to Milgrom and Roberts (1990, 1994).

Theorem A.4. Let (S, ≥) be a complete lattice, Bt : S → S is a continuous but for

upwards jumps function in x, for t ≥ 0 such that Bt(x) is increasing in t, for all x. Then the

minimal and maximal fixed points of Bt are increasing in t.

A continuously differentiable function U(x, y, t) on a rectangular domain with Uy ̸= 0 sat-

isfies the (strict) Spence-Mirrlees condition if Ux

|Uy | is increasing (increasing) in t for any fixed

(x, y).
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A family of functions {h(·;α) : R −→ R} is richly parameterized if for all (x′, y′) and (x′′, y′′)

with x′ ̸= x′′, there is some α̂ s.t.y′ = h(x′, α̂) and y′′ = h(x′′, α̂).

We close with the following results by Milgrom and Shannon (1994)

Theorem A.5. Let R2 be given the lexicographic order. Suppose that U(x, y, t) : R3 → R

is twice-continuously differentiable and both Ux and Uy are nonzero everywhere. Then U(x, y, t)

has the (strict) SCP in (x, y; t) if and only if it satisfies the (strict) Spence-Mirrlees condition.

Theorem A.6. Suppose that U(x, y, t) : R3 → R is twice-continuously differentiable and

both Ux and Uy are nonzero everywhere. Let {h(·;α) : R −→ R} be a richly parameterized

family. Then U(x, y, t) has the (strict) SCP in (x, y; t) if and only if for all α, g(x; t, α) =

U(x, h(x;α), t) has the (strict) SCP in (x, t).
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