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Abstract

This paper studies a standard model of the private provision of public goods which

can be either normal or inferior. Using new tools from monotone comparative statics, the

paper fully characterizes the Nash equilibria for each case and shows that the condition for

the normality (inferiority) of the public good is sufficient for the extremal total equilibrium

contribution to be increasing (decreasing) in the group size. When the public good is

inferior, there always exists a “monopoly provision” equilibrium involving one contributor

and n−1 free riders, which surprisingly supplies the highest amount of public good among

all possible equilibria, also generating the highest social welfare if the utility function is

convex in the private good. The lattice-theoretic methodology allows a generalization

of the classical results by showing that the assumption of quasi-concavity of the utility

function is not “critical” and therefore can be relaxed.
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1 Introduction

The theory of voluntary provision of public goods has received growing attention after the pub-

lication of Samuelson’s (1954; 1955) seminal works. Since then the theory has been discussed in

Olson (1965), McGuire (1974), Laffont (1988), Warr (1982, 1983), Bergstrom et al. (1986), Var-

ian (1994), Kerschbamer and Puppe (1998), Gaube (2000, 2001) and others. One of the most

important results was obtained in Bergstrom et al. (1986), which generalized Warr’s (1983)

invariance result, i.e., the equilibrium contribution to the public good is invariant to moderate

income redistribution among players, and gave a full characterization of the equilibrium’s com-

parative statics property with respect to income redistribution under the assumption that both

the private good and the public good are normal.

Important contributions to the theory have also been made by Cornes and Sandler (1984a,b,

1994, 1996). They noticed that Nash equilibrium for the provision of a pure public good is

generally not efficient, in the sense that the equilibrium contribution to the public good is

less than the one that is Pareto efficient. Since then much attention has been engaged to the

search for possible solutions that would overcome the under-provision of public good, which is

considered as a sign of market failure and a justification for government intervention.

Many works have also been concerned with the problem of free-riding (or easy riding, as

Cornes and Sandler call it, since the individuals contribute less than socially desired rather than

not contribute at all) and the exacerbation of this tendency as the group size increases. It is a

widely accepted hypothesis that when the public good is voluntarily provided, the incentives to

free ride and the inefficiency of Nash equilibrium increase with the number of individuals (Olson,

1965; Laffont, 1988; Mueller, 1989; Sandler, 1992). But this claim has been usually illustrated

only by means of examples of Cobb-Douglas and quasilinear utility functions. Gaube (2001)

found that sufficient conditions for this general presumption to hold are conditions for both

public and private goods to be strictly normal and weak gross substitutes.

Another important issue in the theory of public goods is whether a sequential model of

private provision leads to greater or lesser contribution than a simultaneous-move game. Varian

(1994) studies both models and shows that under the strict normality of both the private good

and the public good, the total contribution to the public good in a sequential game is never
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larger than in a simultaneous-move game.

Overall, the assumption of strict normality of both goods for all consumers is easily seen

to be standard in the theory of private provision of public goods. The purpose of the present

paper is to see whether this assumption, widely used in the theory, is sufficient to give rise to

unambiguous comparative statics conclusions without reliance on other, nonessential assump-

tions (such as the strict quasi-concavity of the utility function), and how the reversal of this

assumption to inferior public goods, affects the overall comparative statics analyses. As pointed

out by Kerschbamer and Puppe (1998), the strict normality of public goods at any income level

is not well justified. The notion of inferior public goods is not a far-fetched one on practical

grounds: The public parks and buses in many metropolitan areas are predominantly utilized

by the lower-income groups; people tend to substitute private services for public facilities (such

as private gym for community recreaction center) when they become wealthier; etc.

Building on the classical model studied in Warr (1983); Bergstrom et al. (1986), this paper

studies the two cases separately (i.e., when the public good is normal and when it is inferior),

fully characterizes the pure-strategy Nash equilibria, and gives a thorough examination of the

equilibrium’s comparative statics property with respect to the group size.

The analysis of this paper relies on a new monotone comparative statics approach based on

lattice-theoretic methods (Topkis, 1978, 1979; Vives, 1990; Milgrom and Roberts, 1990, 1994;

Milgrom and Shannon, 1994). The advantage of this new approach over the traditional method

is widely recognized as utilizing only a subset of the standard assumptions to deliver general, un-

ambiguous comparative statics results. In other words, it discards the superfluous assumptions

that are not “critical” to deriving the results, despite their wide usage in the theory literature.

Besides, this approach also circumvents some ill-defined comparative-statics statements arising

from the multiplicity of equilibria, by dealing only with the extremal equilibria. One major

application of the monotone comparative statics approach is in oligopoly theory (see, among

others, Amir, 1996b, 2003; Vives, 1999; Amir and Lambson, 2000).

The standard model used in the theory literature consists of one public good, one private

good, and n consumers with identical tastes. Unlike Bergstrom et al. (1986), this paper also as-

sumes all consumers have the same wealth thus focusing on the symmetric equilibrium. Adding

a production technology for the public good, the utility function may no longer possess the
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property of strict quasi-concavity (in the decision variables) that is generally assumed to be

true in the classical literature. Nevertheless, the lattice-theoretic method confirms the existence

of a symmetric Nash equilibrium as long as the public good is normal, by using Tarski’s fixed-

point theorem for isotone (increasing) reaction mappings. In this case, there may be multiple

symmetric equilibria but no other asymmetric equilibrium exists, and the total public good

supply in the extremal equilibria is increasing in n. If the normality of the private good is also

imposed, then the equilibrium is unique, and the individual contribution to the public good is

decreasing in n. Hence these results may suggest a moderate form of free-riding: while each

individual contributes less with a larger group size, the total contribution still increases.

The novel case with an inferior public good is studied in the second part of the paper. It turns

out that the inferiority of the public good implies strong submodularity between the players’

contributions: the reaction curve decreases at a rapid speed with slopes no greater than -1. It

is well-known that no general existence of Nash equilibrium is guaranteed in submodular games

(with a few exceptions, see e.g., Vives, 1999). Nevertheless, a “monopoly provision” equilibrium

is identified and is shown to always exist with an inferior public good. The “monopoly provision”

equilibrium refers to one wherein one consumer contributes and everyone else free rides. The

existence is due to the afore-mentioned strongly decreasing reaction mappings, an observation

first made by Novshek (1985) and applied to Cournot context by Amir and Lambson (2000).

In addition to the ‘monopoly provision” equilibrium, other possible equilibria are also char-

acterized, which must be partially symmetric (in the sense that all contributors must donate the

same amount). Comparing the symmetric equilibria, the inferiority of the public good leads to

a reversal in the comparative staitcs: not just the individual contribution, but the equilibrium

total contribution also decreases in n. In other words, a larger group will end up in provid-

ing less public good, a quite counter-intuitive result marking a strong form of free-riding. A

direct implication is that fixing the group size, the “monopoly provision” equilibrium provides

the highest amount of public good among all possible equilibria! Furthermore, if the utility

function is convex in the private good (which coincides with the condition for the inferiority of

the public good if the utility function is separable, also see Liebhafsky, 1969), the “monopoly

provision” equilibrium also generates the highest social welfare among all possible equilibria.

The rest of the paper is organized as follows. The general model is developed in Section 2,
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with some discussions on the premises of the model. The case with a normal public good is

analyzed in Section 3, followed by the case with an inferior public good in Section 4. Section 5

concludes. All proofs of the theorems are placed in the Appendix.

2 The model and fundamental premises

This section lays out the fundamentals of a simple model of private provision of public good,

which is a variation of the earlier version discussed in Bergstrom et al. (1986). A major extension

of the paper over the classical models is to introduce a production technology for the public

good, taking the voluntary contribution of players as the sole input. The introduction of this

production technology may undermine the regularity assumption for the utility function, which

requires it to be strictly quasi-concave (in the decision variables).

2.1 The model setup

Consider a standard utility maximization with one public good, one (representative) private

good, and n consumers (players) in a community. Each consumer has the same wealth w and

preference U(xi, q). Here, xi is the amount of private good purchased by consumer i, and q is

the consumption/output of the public good, which is the same for everyone. The public good is

produced using a sole input, which is voluntarily donated by the consumers. Let yi denote the

contribution of consumer i, y−i the sum of the contribution made by all other consumers except

consumer i. The total contribution made by all consumers is denoted by z, i.e., z =
∑n

i=1 yi or

z = yi+y−i for any i. The production technology is specified by a strictly increasing production

function f : R+ → R+ which maps the input z to the output q of the public good, i.e., q = f(z).

Even without contributing from herself, consumer i enjoys a total consumption q = f(y−i) of

the public good, which creates an incentive to free ride. In the classical literature (e.g., Warr,

1982; Bergstrom et al., 1986; Cornes and Sandler, 1984a,b; Varian, 1994), f usually assumes

the degenerate form of the identity function, i.e., f(z) = z, in the sense that the donations

made by the players can be consumed directly (e.g., books) or there is constant return to scale.

The prices of the two marketed goods are exogenous: the private good is traded at a price

p, and the price of the public good input is without loss of generality normalized to 1. Thus one
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may think of the contribution as a pure monetary one. Taking the voluntary contribution by

other consumers y−i as given, consumer i maximizes her utility U(xi, f(yi + y−i)) by choosing

her private consumption xi and the voluntary contribution yi, subject to the usual budget

constraint pxi + yi = w.

Definition 1. A Nash Equilibrium for the model of private provision of the public good is a

vector of contributions y∗i , i = 1, ..., n, such that for each i, (x∗
i , y

∗
i ) is a solution to the following

utility maximization problem

max
xi≥0,yi≥0

U(xi, q)

s.t. pxi + yi = w

q = f(yi + y∗−i)

The major interest of the paper lies in studying the comparative statics of the equilibrium

public good contribution (yi for each individual and z for the community) with respect to the

group size n. One may notice the resemblance of the underlying structure to that of a Cournot

oligopoly, where the conduct of comparing the market performance variables such as the firm’s

and the industry output in a Cournot-Nash equilibrium under different market structures is

often seen (a more explicit connection is studied in McGuire, 1974). Indeed, the key technique

used in this paper, namely by examining the players’ reaction correspondences under symmetric

assumptions in a supermodular (submodular) game, bears a close resemblance to that used by

Amir and Lambson (2000) in studying the comparative statics in a Cournot oligopoly.

As for the notation, an upper script n is used to denote the equilibrium set (or singleton

if the equilibrium is unique) value of the variables in a n-player symmetric equilibrium. That

is, xn
i denotes the equilibrium private good consumption (the lower script i is kept to indicate

the variable evaluated at an individual level), yni the equilibrium individual contribution to

the public good, zn the equilibrium total contribution, etc. If there is a possibility of multiple

equilibria, i.e., the equilibrium variables have a set value, the upper and lower bars are used to

denote the maximal and minimal elements of the equilibrium set of variables, i.e., the maximal

and minimal equilibrium. With a simple application of the Envelop Theorem, one may also

derive the comparative statics for the consumer’s equilibrium utility value. The indirect utility
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function of consumer i is denoted by V (w, y−i), which is a function of the wealth w and the

contribution made by other players y−i. Formally, substituting xi from the budget constraint,

V (w, y−i) is defined as

V (w, y−i) = max
0≤yi≤w

U(
1

p
(w − yi), f(yi + y−i)). (1)

As noted in Warr (1982) and Bergstrom et al. (1986), an alternative way to formulate the

problem is to view consumer i as choosing the total contribution level z = y−i + yi, given

the others’ contribution y−i. The feasibility constraint becomes y−i ≤ z ≤ y−i + w, where

the right-hand side can be viewed as the consumer’s adjusted wealth, which equals her own

wealth plus the contribution made by others. Such a change of variable is widely seen in the

context of aggregate games, where the player’s payoff depends on the aggregate value of other

players’ actions, the public good game at hand being one of such a feature while another being

the Cournot oligopoly game (see, e.g., Novshek, 1985; Amir and Lambson, 2000). Thus, the

corresponding utility maximization after substituting xi from the budget constraint becomes

max
y−i≤z≤w+y−i

U(
1

p
(w + y−i − z), f(z)). (2)

The two alternative specifications of utility maximization (1) and (2) should yield consistent

solutions to the consumer problem. A joint examination of both is later shown to be essential

in establishing the properties of the players’ reaction correspondences, which facilitates the

comparative-statics analysis.

2.2 The premises and the normality of the private good

This subsection gives a detailed account of the premises of the model based on the primitives.

For regularity, the following assumptions are valid throughout the paper:

(A0) f(z) is strictly increasing and twice continuously differentiable.

(A1) U(xi, q) is twice continuously differentiable with U1, U2 > 0.

(A2) (Normality of the private good) U2U21 − U1U22 − f ′′

(f ′)2
U1U2 > 0.

The production function is monotone. The utility function is strictly increasing in both
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arguments in a global sense, reflecting the view that both of the private and public commodities

are good without satiation (an interesting discussion for the Pareto properties of a satiating

utility function can be found in Cornes and Sandler, 1984a). Note that the smoothness is

assumed for ease of exploration but is not essential to the analysis.

In particular, there is no explicit restriction on the utility function being quasi-concave,

which is usually taken as a standard assumption in the classical literature validating the use of

the Implicit Function Theorem or the standard fixed-point theorems. The production function

adds another layer of intricacy. Even with a well-behaved, convex preference, so that U(xi, q)

is strictly quasi-concave in the two goods (xi, q), U(xi, f(z)) may fail to be strictly quasi-

concave in the two decision variables (xi, z), in light of a rather convex production technology

f(·) when there is strong decreasing return to scale (this point is illustrated in Example 1).

Indeed, a well-known advantage of the lattice-theoretic methodology used in this paper is to

discard superfluous assumptions as such and to yield general, unambiguous comparative-statics

conclusions with a minimally sufficient set of conditions.

A2 is a sufficient condition for the private good to be normal. The normality is defined in

the usual sense, i.e., given any y−i, (every selection of) the arg max of the utility maximization,

x∗(y−i;w) = argmax{U(xi, f(w − pxi + y−i)) : 0 ≤ xi ≤
w

p
} (3)

is an increasing function of w. Notice that if f(z) = z, A2 becomes the standard normality con-

dition, U2U21 − U1U22 > 0, or equivalently the marginal rate of substitution U1(xi, q)/U2(xi, q)

increasing in q. As is well known, the normality of the private good implies that the player’s

optimal contribution along the reaction curve path decreases in the sum of other players’ contri-

butions.1 A2 is less (more) restrictive than the standard normality condition if the production

function has decreasing (increasing) return to scale, i.e., f ′′ < 0 (f ′′ > 0).

Because the utility function need not necessarily be quasi-concave, the sufficiency of A2 in

1A simple way to see this is to assume consumer i’s demand of the public good (input), z, given her adjusted
wealth wi + y−i, is z = g(wi + y−i). Subtracting y−i from both sides, then her willingness to contribute is
yi = g(wi + y−i)− y−i. Obviously, dyi

dwi
= g′, and dyi

dy−i
= g′ − 1, the latter being the slope of player i’s reaction

curve. Since dyi

dwi
+ p dxi

dwi
= 1, a normal private good implies dyi

dwi
≤ 1, or dyi

dy−i
≤ 0. Similarly, a normal (inferior)

public good implies dyi

dwi
≥ (≤)0, or dyi

dy−i
≥ (≤) − 1. This simple illustration apparently requires the existence

of a continuous demand function of the public good, g(·), which in turn requires strict quasi-concavity of the
utility function. This is not needed in the formal analysis using the lattice-theoretic arguments.
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implying the normality of the private good as well as the negative monotonicity of the players’

reaction correspondences cannot be directly shown by the conventional method, which relies on

using the Implicit Function Theorem. Instead, a lattice-theoretic argument is established here

that entails showing a two-fold implication of A2: (i) the utility function U(xi, f(w−pxi+y−i))

as specified in maximization (3), has the strict single crossing property or SCP (Milgrom and

Shannon, 1994) in (xi;w), and similarly, (ii) U(1
p
(w−yi), f(yi+y−i)) as specified in maximization

(1), has the strict SCP in (−yi; y−i), i.e., with a reversed order on yi.

Definition 2 (Milgrom and Shannon, 1994). Let f : R2 → R. Then f satisfies the (strict)

single crossing property in (x; t) if for x′ > x′′ and t′ > t′′, f(x′, t′′) > f(x′′, t′′) implies that

f(x′, t′) ≥ (>)f(x′′, t′).2

Being the ordinal version of the property of increasing differences for a function, the SCP

similarly describes the complementarity between a function’s two arguments, but with a dis-

crimination between the two variables (in the sense that x and t are not interchangeable).

The direct application of the SCP is to establish comparative statics with respect to the

two arguments considered at hand. The related theorem is proposed in Milgrom and Shan-

non (1994) as the Monotonicity Selection Theorem, on which all of this paper’s results are

based. The Monotonicity Selection Theorem is an important ordinal generalization of Topkis’s

(1978) result on supermodular functions (or functions with increasing differences in the Eu-

clidean space), which is essentially a cardinal property and hence need not be preserved with

monotone transformations. In short, the theorem says that every selection of the arg max,

x∗(t) = argmax{f(x; t) : x ∈ [h(t), g(t)]}, is increasing in t if f(x; t) has the strict SCP in (x; t)

and both h(t) and g(t) are nondecreasing in t.

In the public good game context, the Monotonicity Selection Theorem suggests that (with

a qualification of the feasibility constraint that can be easily checked here), as implied by A2,

since U(xi, f(w−pxi+y−i)) has the SCP in (xi;w), the utility maximization with respect to xi

necessarily yields upward sloping correspondence x∗(y−i;w) with respect to w, which implies the

2The single crossing property is the ordinal version of increasing differences (or supermodularity in the
Euclidean space at hand), which is preserved under monotonone transformation of the objective function.
SCP discriminates between the two variables, and is more general than increasing differences in that a function
satisfying the latter necessarily satisfies the former, e.g., the condition for increasing differences of a continuously
differentiable function ∂2f/∂x∂t ≥ 0 implies that f has the SCP in (x; t) as well as in (t;x).
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normality of xi. Similarly, since U(1
p
(w− yi), f(yi + y−i)) has the SCP in (−yi; y−i), the utility

maximization with respect to yi necessarily yields downward sloping correspondence y∗(y−i;w)

with respect to y−i, i.e., downward sloping reaction curves. The significance of A2 is formally

addressed in Lemma 1.

Lemma 1. If A2 holds, then (i) the private good is normal, and (ii) every selection of the

reaction correspondence, y∗(y−i;w) = argmax{U(1
p
(w − yi), f(yi + y−i)) : 0 ≤ yi ≤ w}, is

decreasing in y−i for any w.

Under A2, the private good is assumed to be normal throughout the paper—with only

one representative private good in the consumer’s utility function, one can hardly suppose the

opposite—though a remark on some reversed results of the comparative statics of the individual

equilibrium contribution, when the private good is inferior while the public good is normal, will

be given in the next section. As one may conjecture, the private good is inferior if the inequality

in A2 holds in the “less than” direction,3 which also implies that the individual equilibrium

contribution is an increasing function of the other players’ contribution, a case where there is

no free riding! In fact, this situation exactly corresponds to the “perverse” case in Cournot

oligopoly where a firm’s reaction curve is increasing in the rival’s output (see e.g., Amir, 1996b;

Vives, 1999), which yields unintuitive conclusions for the market performance variables.

In the following paper, two split cases on the characteristics of the public good are discussed

in order: (1) when the public good is normal and (2) when it is inferior. Another assumption

similar to A2 will be shown to guarantee the normality or inferiority of the public good. Before

proceeding to the discussion of public goods, some last comments on the significance of A2

are needed in place. First, in the case when the public good is normal, A2 is not needed for

the existence of a pure-strategy Nash equilibrium (Proposition 1) or the comparative statics

of the equilibrium total contribution zn and the indirect utility function V n with respect to

n (Proposition 2), but it is crucial in determining the comparative statics of the equilibrium

individual contribution yni , to be decreasing in n (Proposition 3). A reversion of A2 leads to

the opposite, atypical if not perverse result. If a player is deemed to have a free-riding incentive

3Because the feasibility constraint, xi ∈ [0, w/p], is ascending in w, some additional arguments are needed to
ascertain the inferiority of xi, namely the private good needs to be normal in the premise. A detailed remark
is given in the Appendix following the proof of Lemma 1.
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when her reaction curve is decreasing in other players’ contribution, then one may say that the

normality of the private good is what drives the free-riding incentive. On the other hand, A2

must hold in the second case, when the public good is inferior, as a natural consequence of the

two-good economy considered at hand.

Remark. The results of the paper also apply to a setting with n firms maximizing their

output of a product (or their profits if the product market is perfectly competitive), where the

production function of Firm i depends on a private input xi (good 1) and a collective input z

(good 2), with z = yi + y−i, so that each firm uses not only its own input yi of good 2 but also

what is available from others’ input (such as R&D investments with perfect spillovers).

3 The case with a normal public good

In this section, I consider the case when the public good is normal for each consumer i,

i = 1, ..., n. The public good is said to be normal if given any y−i, every selection of the

arg max of (1), y∗(y−i;w) is increasing in w. In other words, the individual contribution given

other players’ contribution is an increasing function of her wealth. This is consistent with the al-

ternative definition of normality over the output or consumption of a good, as the monotonicity

is preserved by the strictly increasing production function (A0), with q = f(y∗(y−i;w) + y−i).

In Bergstrom et al. (1986), the normality of both the private and public goods is shown to

guarantee a unique pure-strategy Nash equilibrium, giving rise to the comparative statics that

pertain to the redistribution of wealth. Here, the focus is instead on the comparative statics

pertaining to the group size n.

The following assumption is sufficient for the normality of the public good.

(A3) (Normality of the public good) U1U21 − U2U11 > 0.

Lemma 2. If A3 holds, then (i) the public good is normal, and (ii) every selection of the

reaction correspondence, z∗(y−i;w) = argmax{U(1
p
(w+ y−i − z), f(z)) : y−i ≤ z ≤ w+ y−i}, is

increasing in y−i for any w.

A3 is the familiar condition for a normal public good. Expressed in an equivalent way,

it requires the MRS, U2(xi, q)/U1(xi, q), to be increasing in xi. The direct implication of A3
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is that U(1
p
(w − yi), f(yi + y−i)) as specified in (1) has the strict SCP in (yi;w), and that

U(1
p
(w + y−i − z), f(z)) as specified in (2) has the SCP in (z; y−i). Then Lemma 2 follows by

applying the Monotonicity Selection Theorem.

Therefore, the total contribution chosen by a player is increasing in the other players’

contributions. Also, z∗(y−i;w) is allowed to be not everywhere continuous, but can only have

upward jumps, as suggested by Lemma 2(ii). Note that for any selection y′ ∈ y∗(y−i;w), there

exists some z′ ∈ z∗(y−i;w) such that z′ = y′ + y−i. It follows that any selection of y∗(y−i;w)

has its slopes bounded below by -1. The monotone property of z∗(y−i;w) allows us to establish

the existence of a symmetric Nash equilibrium by Tarski’s fixed-point theorem and to rule out

any asymmetric equilibria.

Proposition 1. With the normality of the public good (A3), there exists a symmetric Nash

equilibrium, and no asymmetric equilibria exist.

A symmetric Nash equilibrium is a fixed point of the selection n−1
n
z′(y−i), where z′(y−i) ∈

z∗(y−i;w) with the wealth argument omitted. Because any such equilibrium must satisfy

y′(y−i) = 1
n−1

y−i where y′(y−i) is a selection of the reaction correspondence y∗(y−i;w), and

then z′(y−i) = y′(y−i) + y−i =
n

n−1
y−i. By Lemma 2, every selection of z∗(y−i;w) is increas-

ing in y−i, then the existence of a symmetric Nash equilibrium follows by Tarski’s fixed-point

theorem. In contrast to Bergstrom et al. (1986) where the existence is obtained by assum-

ing strictly quasi-concave utility function and applying Brouwer’s fixed-point theorem for a

continuous function, here the utility function U(xi, f(z)) need not be quasi-concave in (xi, z).

Furthermore, the strict inequality of A3 implies that every selection of z∗(y−i;w) is strictly

increasing in y−i, hence there is only one y−i consistent with a player’s choice of the equilibrium

total contribution z. This assures that no asymmetric equilibrium can exist.

With upward-sloping reaction correspondences, the game may have more than one symmet-

ric equilibrium. The possibility of multiple equilibria leads to criticism of the traditional method

used to analyze the comparative statics of equilibrium variables for its ambiguity, namely by

differentiating the first-order condition and analyzing the sign of certain partial derivatives. Be-

cause not all equilibria satisfy the comparative statics derived this way—in general, only the sta-

ble ones do—and the number of equilibria may also change. In this regard, the lattice-theoretic
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method holds an advantage as it yields general, unambiguous comparative-statics conclusions

for the extremal (i.e., the maximal and minimal) equilibria, usually with a minimally sufficient

set of complementarity conditions. The next Proposition states the comparative-statics results

for several important variables.

Proposition 2. With the normality of the public good (A3), the following hold:

1. The joint contributions of (n−1) consumers to the public good in the extremal equilibria,

ȳn−i and yn−i
, are increasing in n.

2. The total contribution of all consumers to the public good in the extremal equilibria, z̄n

and zn, are increasing in n.

3. The value of the indirect utility function in the extremal equilibria, V̄ n and V n, are

increasing in n.

The proof of this set of comparative-statics results is straightforward. Since the extremal

selections of the reaction correspondence n−1
n
z∗(y−i) are increasing in n (i.e., n−1

n
increases in n

and z∗(y−i) is not affected by n), the extremal fixed points ȳn−i and yn−i
of these selections must

also increase in n, as they are the intersection of the reaction functions with the 45-degree line.

Then z̄n = z̄∗(ȳn−i;w) and zn = z∗(yn−i
;w) are increasing in n, because z̄∗(y−i;w) and z∗(y−i;w)

are increasing functions of y−i. The same arguments hold for the indirect utility function too,

because V (w, y−i) is an increasing function of y−i by the Envelope Theorem. When the public

good is normal, the Proposition confirms that the total public supply increases with the group

size and each consumer is better off in the extremal equilibria. However, it is unclear whether

the individual contribution also increases with n as the total contribution may have risen due

to the added number of consumers. In that sense, the extremal individual contribution ȳni and

yn
i
can be either increasing or decreasing in n. It turns out the comparative statics of individual

contribution depends on the characteristic of the private good, which is so far not needed, but

crucial to the next Proposition.

Proposition 3. With the normality of both the private good (A2) and public good (A3), there

exists a unique and symmetric Nash Equilibrium, where the equilibrium individual contribution

yni decreases in n, and the private good consumption xn
i increases in n.
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Lemma 1 and 2 imply that the normality of both goods guarantees the slope of every selec-

tion of the reaction correspondence y∗(y−i;w) to be bounded between [−1, 0]. The uniqueness

of Nash equilibrium then follows from a fairly standard argument (see, e.g., Lemma 2.3 in Amir,

1996a), and a simple alternative proof (using the fact that no asymmetric equilibria exist) is

also provided in the Appendix. The comparative statics follows, as every selection of y∗(y−i;w)

is decreasing in y−i, and the equilibrium yn−i is increasing in n by Proposition 2. Notice that

the maximal and minimal equilibria coincide due to the uniqueness of Nash equilibrium.

Although the conclusions are derived using the lattice-theoretic method, the normality of

both the private and public good also implies that the utility function is quasi-concave,4 so

the uniqueness can also be proved by the classical methodology (as derived in Theorem 3 of

Bergstrom et al., 1986).

Remark. Another possible case is that the public good is normal, but the private good is

inferior. It is less plausible as the utility function consists of only one private good. Nevertheless,

this case may still carry some theoretical interest and a brief remark is given here. It is proved

in the Appendix (following the proof of Lemma 1) that if A2 holds in the opposite direction,

the utility function U(1
p
(w − yi), f(yi + y−i)) has the strict SCP in (yi; y−i), and hence every

selection of the reaction correspondence y∗(y−i;w) is increasing in y−i by the Monotonicity

Selection Theorem (Milgrom and Shannon, 1994). It means that rather than being an easy

rider (as called by Cornes and Sandler, 1984a), a player will increase her contribution along the

reaction curve when she observes more contribution from other players; the free-riding incentive

disappears if the private good is inferior. The upward sloping reaction correspondence may lead

to multiple equilibria. But as Propositions 1 and 2 still hold in this scenario, the contribution

of n− 1 players in the extremal equilibria, ȳn−i and yn−i
, are increasing in n, so the equilibrium

individual contribution ȳni = ȳ(ȳn−i;w) and yn
i
= y(yn−i

;w) will increase in n, and the equilibrium

private good consumption x̄n
i and xn

i will decrease in n. In a nutshell, conclusions given in

Proposition 3 have a major reversion when the private good is inferior.

4The utility function U(xi, f(z)) is quasi-concave in (xi, z) if the determinant of the bordered Hessian is

positive, i.e., 2U1U2U21 −U2
2U11 −U2

1U22 − f ′′

(f ′)2U
2
1U2 ≡ D > 0. Note that the determinant can be decomposed

in such a way as D = U1(U2U21 − U1U22 − f ′′

(f ′)2U1U2) + U2(U1U21 − U2U11). Therefore if both A2 (normality

of private good) and A3 (normality of public good) hold, the utility function is quasi-concave in (xi, z). The
failure of either of the two assumptions may result in U not being quasi-concave.
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This section is concluded with a simple but illustrative example, where the utility function

is strictly quasi-concave in (xi, q)—thus the preference is strict convex with respect to the

private the public good—but is not strictly quasi-concave in the two decision variables (xi, z)

after incorporating the production function q = f(z). If the private good is more expensive

than the public good input (i.e., p > 1), each player has a dominant strategy to contribute all

wealth to the public good, i.e., x∗(y−i;w) = 0 and y∗(y−i;w) = w. Notice that the former is

weakly increasing (i.e., constant) in w and the latter is weakly decreasing in y−i, thus this is a

borderline example in light of Lemma 1. The comparative-statics conclusions can be checked

procedurally.

Example 1. Consider the utility function U(xi, c) = xi +
√
q. The utility represents a well-

behaved convex preference and is obviously strictly quasi-concave in (xi, q). Assume the produc-

tion function is convex and takes the form f(z) = z2. Incorporating f(·), the utility function

becomes U(xi, f(z)) = xi + z, linear but no longer strictly quasi-concave, which do not fit

with the traditional method. Nevertheless, there exists a unique, symmetric Nash equilibrium

corresponding to the utility maximization

max (xi + yi + y−i)

s.t. pxi + yi = w, xi > 0, yi > 0.

Note that for any p > 1, the dominant strategy for each player i is to choose y∗(y−i;w) = w

and x∗(y−i;w) = 0 as the marginal utility is 1 for both goods, no matter what y−i the opponents

choose. Then z∗(y−i;w) = w + y−i, which is increasing in y−i. The unique dominant-solvable

equilibrium is a symmetric one where every consumer contributes all her wealth to the public

good. Then the equilibrium contribution of n− 1 players is yn−i = (n− 1)w, which is increasing

in n. In the equilibrium, the total contribution is zn = nw while the indirect utility of each

player is V n = nw, both are increasing in n. The equilibrium individual contribution, yni = w,

is weakly decreasing in n. If p < 1, there is also a unique, dominant-solvable equilibrium where

no one contributes at all, i.e., xn
i = w/p, yni = 0, yn−i = zn = 0 and V n = w/p. As seen, all the

comparative statics results hold in a borderline sense.
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4 The case with an inferior public good

In the classical literature on the private provision of public goods, a standard assumption is

the strict normality of both the private good and the public good. This assumption seems to

be mainly motivated by technical reasons, as the dual normality and the strict quasi-concavity

of the utility function jointly guarantee the existence of a single-valued demand of the public

good as a function of the individual wealth, with its slopes bounded between 0 and 1 (see e.g.,

Bergstrom et al., 1986). However, as pointed out by Kerschbamer and Puppe (1998), there are

some real-life circumstances of privately provided public goods for which the strict-normality

assumption is not justified, at least not for all wealth levels.

One may even go one step further to say that certain types of public goods seem to assume

the characteristics of an inferior good. For instance, public parks and public transportation

(such as buses) in many metropolitan areas are majorly utilized by low-income people, or even

the homeless. Many community facilities, which are open to the public and free to use, often

have a private, paid-version substitute that dominates in terms of equipment and services.

Examples include the community recreation center and a private gym, public tennis courts and

private tennis clubs, residential and commercial playgrounds for children, etc. There is often a

tendency for people to substitute private services for public facilities as they become wealthier.

In this section, we assume the public good is inferior for all consumers at all wealth levels.

Even with the preceding examples, this global inferiority may seem too strong on the practical

ground, but it largely simplifies the analysis and provides some interesting results.

(A3’) (Inferiority of the public good) U1U21 − U2U11 < 0.5

Lemma 3. If A2 and A3’ hold, then (i) the public good is inferior, and (ii) the utility function

U(1
p
(w + y−i − z), f(z)) has the strict SCP in (z;−y−i).

The inferiority of the public good requires (A3’) U1U21 − U2U11 < 0, or the marginal rate

of substitution, U2(xi, q)/U1(xi, q), to be decreasing in xi. Note that A3’ is more likely to hold

5In addition, it is assumed that the consumer is wealthy enough such that at the lowest wealth level, her
standalone contribution (as called by Varian, 1994), i.e., the contribution made when other agents contribute
zero, is strictly between (0, w), so that the consumer consumes positive amounts of both private and public
goods. This avoids the possibility of an increasing part of the demand for the public good at low wealth levels,
where the player spends all wealth on the inferior public good, which violates global inferiority.
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when the utility function is convex in the private good, i.e., U11 > 0. Indeed, if the utility

function is separable, i.e., U21 = 0, then A3’ coincides with the convexity of the utility function

in the private good.

By Lemma 3, when the public good is inferior, the utility function U(1
p
(w+y−i−z), f(z)) has

the strict SCP in (z;−y−i), which means that the player’s reaction correspondence z∗(y−i;w) in

terms of maximization (2) has a tendency to decrease in y−i. However, because the feasibility

constraint z ∈ [y−i, y−i+w] is ascending in y−i, the Monotonicity Selection Theorem cannot be

directly applied. It is proved in the Appendix that every selection of the reaction correspondence

z∗(y−i;w) is a (strictly) decreasing function of y−i, until it hits the lower bound and slopes

upward thereafter. In view of the relationship between z∗(·) and y∗(·), it suggests that every

selection of y∗(y−i;w) is decreasing in y−i quite rapidly with slopes no greater than −1, before

it hits zero and stays thereafter (see Lemma 4 in Appendix for a full characterization of the

graph of y∗(y−i;w) in this case).

As both z∗(y−i;w) and y∗(y−i;w) are decreasing in y−i, it is well-known that there is no

general result for the existence of Nash equilibrium in submodular games (with some exceptions,

see e.g., Vives, 1999).6 Indeed, symmetric equilibria may fail to exist in our model, but the

existence is guaranteed by a “monopoly provision” equilibrium. The following Proposition

characterizes all possible equilibria in this game.

Proposition 4. With the normality of the private good (A2) and the inferiority of the public

good (A3’), the following holds:

1. There always exists an equilibrium where one consumer contributes a positive amount to

supply the public good and other (n− 1) consumers do not contribute at all.

2. Whenever a symmetric equilibrium exists in an m-player game for some m < n, there is

no other symmetric equilibrium, and it also constitutes an equilibrium for the n-player game,

with the other (n−m) consumers not contributing at all.

3. No other equilibrium exists except the ones characterized above, i.e., no such equilibrium

exists where two consumers make positive yet different contributions to the public good.

6Novshek (1985) provides a fixed-point argument for Cournot competition when the best reply of each player
is decreasing and only depends on the aggregate action of the rivals, which fits the context at hand and thus
guarantees the existence of a Nash equilibrium (altenatively, see Thoerem 2.7 in Vives, 1999). A “monopoly
provision” equilibrium always exists but other equilibria such as a symmetric one may not exist.
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The “monopoly provision” equilibrium refers to one where one consumer contributes the

“monopoly amount”, i.e., the amount she contributes when she is the sole player of the game

(the standalone contribution), while all other consumers free ride. There is a slight abuse of

language here as the context has nothing to do with oligopoly competition, although it has

been mentioned earlier that there is a certain connection between Cournot oligopoly and the

public good game at hand. The contributor and free riders are mutually best-responding to

each other because y∗(y−i;w) decreases at slopes no greater than -1, i.e., if y−i increases by

∆y, the best response of player i will decrease by more than ∆y. This implies that the best

response to a “monopoly provision” contribution y1i is zero given that y1i is best responding to

zero. Similarly, the best response by a free rider to a m-player total contribution mymi is also

zero, given that ymi is a player’s best response to (m− 1)ymi , which corresponds to the second

half of part 2. In this case, the equilibrium is invariant to additional players who join and free

ride (thus invariant to n), as long as the m contributors constitute a symmetric equilibrium

among themselves, the latter may be termed as an m-player symmetric equilibrium.

Note that the m-player symmetric equilibrium may fail to exist as the reaction curve may

have downward jumps and fail to possess a fixed point. Nevertheless, upon existence, it is unique

in the sense that there is no other symmetric equilibrium in the m-player game, otherwise one

can find a contradiction towards the fact that y∗(y−i;w) is decreasing in y−i. (But there possibly

exists other partially symmetric equilibrium with m′ contributors and m − m′ free riders for

some m′ < m.) Moreover, all possible equilibria must take the partially symmetric form, i.e.,

all contributors must donate the same amount but free riders are allowed. If two contributors

donate different amounts to the public good, it contradicts the fact that z∗(y−i;w) is strictly

decreasing in y−i (before it hits the lower bound) implied by A3’.

In a nutshell, the way to find all equilibria of a n-player game (apart from the monopoly-

provision one) is to find all intersections of the decreasing reaction correspondence y∗(y−i;w)

and the line y−i/(m − 1) for each integer m ∈ [2, n], each intersection defining a symmetric

equilibrium for the m-player game and thus a partially symmetric equilibrium for the n-player

game with n − m free riders. The two graphs may never interest for any m ∈ [2, n] due to

incontinuity of y∗(y−i;w), but no other equilibrium exists apart from ones found in this way.

Proposition 5. Under the same assumptions of Proposition 4, suppose a symmetric equilibrium
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exists in both an m-player and an n-player game, n > m, then

yn−i > ym−i, and yni < ymi , zn < zm, V n > V m.

The major change in the comparative statics compared to the normal public good case,

is that y∗(y−i;w) decreases in y−i so rapidly that even the equilibrium total contribution zn

decreases in n! Since the m-player symmetric equilibrium also constitutes a partially symmetric

equilibrium for the n-player game, a direct consequence is that among all possible equilibria

in an n-player game, surprisingly, the “monopoly provision” equilibrium has the highest public

good supply. The free-riding problem becomes so severe when the public good is inferior that

an extreme outcome as such emerges in the equilibrium. The next Corollary shows that if

the utility function is convex in the private good, the “monopoly provision” equilibrium also

delivers the highest social welfare.

Definition 3. Define the social welfare as the sum of each consumer’s utility in the game,

W =
∑n

i=1 U(1
p
(w − yi), f(z)).

Corollary 6. Under the same assumptions of Proposition 4 and an additional assumption that

U11 > 0, the “monopoly provision” equilibrium has the highest social welfare among all possible

equilibria.

If the utility function is separable (such as the one given in the following Example), i.e.,

U21 = 0, then U11 > 0 coincides with assumption A3’ for the inferiority of the public good

(the same observation is made by Liebhafsky, 1969). Note that the “monopoly contributor” is

worse off than those contributors in an m-contributor partially symmetric equilibrium because

V m > V 1, but the free riders in the “monopoly provision” equilibrium are better off than those

free riding in the m-contributor equilibrium because zm < z1. Corollary 6 settles that the gain

of the latter outweighs the loss of the former given the convexity of the utility function in the

private good. Although the “monopoly” public good provider would prefer an equilibrium with

more contributors than herself alone, the latter may not exist, and even upon existence the

cooperation may fail due to the free-riding incentives possessed by the other players.

Even with an inferior public good and an atypical Pareto-dominant “monopoly provision”

equilibrium, the usual under-production problem associated with the private provision of public
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good may persist. In other words, the “monopoly provision” equilibrium may not be Pareto

efficient. To see this, suppose for simplicity that the utility function is separable, f(z) = z,

and the price of the private good equals 1. The conditions for the normality of the private

good and inferiority of the public good, A2 and A3’, become U22 < 0 and U11 > 0. The

first-order condition of (1) for a free rider in a “monopoly provision” equilibrium suggests

−U1(w, z
1)+U2(w, z

1) < 0, where z1 is the amount donated by the monopoly contributor. Now

suppose each of the (n − 1) free riders voluntarily donate dy while the monopoly contributor

still donates z1. The monopoly contributor is strictly better off because the new total public

good supply has increased to z1 + (n− 1)dy. By committing to simultaneously increasing their

contribution, the (n − 1) free riders are also better off if −U1(w, z
1) + (n − 1)U2(w, z

1) > 0,

which is compatible with other conditions. In fact, the Pareto improvement happens almost

inevitably as the group size n increases.

There are very few examples of an inferior public good that is privately provided by a single

agent. Still, one may think of some community goods that fit with the story. For instance,

the portable library (contained in a small wooden box) seen at the edge of a private garden

for public use, is likely built by the house owner alone with very little collaboration from

the neighborhood. In most cases, these community facilities are built under the government’s

intervention. There may be a reason why the private provision of inferior public goods is so

rare to see. If “monopoly provision” is the unique equilibrium outcome, there is then a role

assignment issue as to which agent should supply the public good, and the agents may be well

reluctant to do so given the extremeness of the provision prospect (i.e., knowing all other agents

will free ride on her) out of fairness concern, possibly resulting in no provision at all. This is

another justification for government’s intervention in such a case except for the usual reason to

overcome the under-production problem.

Example 2. Suppose the utility function has the form U(xi, q) = ln(q − a) − 2 ln(b − xi)

where q = f(z) = z. Given y−i, consumer i maximizes her utility subject to constraints:

max
xi,yi

U = ln(yi + y−i − a)− 2 ln(b− xi)

s.t. pxi + yi = w, 0 < xi < b, yi > max{0, a}
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Since the utility function is separable and the production function is the identity one, A2

coincides with U being concave in q and A3’ with U being convex in xi, both satisfied. Solving

the standalone consumer problem be letting y−i = 0, the demand for the public good is y∗ =

2a + bp − w and the demand for the private good is x∗ = (2w − 2a − bp)/p, thus the public

good is inferior and private good is normal.

Besides the budget constraint yi ∈ [0, w], the logarithm requires y−i > a (in case y−i = 0)

and y−i > w − bp so that xi < b. Substitute yi for xi by the budget constraint and solve the

utility maximization, giving rise to the first-order condition

y∗(y−i;w) = 2a+ bp− w − 2y−i, (4)

which is decreasing in y−i. The symmetric equilibrium is where y∗(y−i;w) = y−i/(n−1). It can

be verified that when a ∈ (− bp
2
, 0) and w ∈ (a+ bp

2
, 2a+bp), the game has an interior symmetric

equilibrium where yn−i =
n−1
2n−1

(2a+bp−w), yni = 1
2n−1

(2a+bp−w), and zn = n
2n−1

(2a+bp−w).

Comparative statics is as expected: yn−i is increasing in n, both yni and zn decreasing in n.

Because the reaction curve (4) is continuous, the n-player game also has all the partially

symmetric equilibrium indexed by the number of contributors m, where each contributor in

an m-contributor equilibrium contributes ymi = 1
2m−1

(2a + bp − w), while others free ride.

In particular, in the “monopoly provision” equilibrium the sole contributor contributes y1i =

2a + bp − w. It follows immediately from (4) that y∗(y1i ;w) = −y1i < 0, thus other players

best respond by not contributing at all. And one can verify that the “monopoly provision”

equilibrium also delivers the highest welfare among all equilibria. Specifically, in this example

the equilibrium welfare is reversely ranked by the number of contributors in the equilibrium,

i.e., the “monopoly provision” equilibrium generates higher welfare than the two-contributor

equilibrium, which generates higher welfare than the three-contributor equilibrium. The last

result cannot be generalized for an arbitrary seperable utility function.
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5 Conclusion

This paper studies the group size effects in a simple model of the private provision of public

goods. The use of new tools from the lattice theory allows to discard unnecessary conditions

used in traditional methods for the existence and uniqueness of Nash equilibrium, in particular

the strict quasi-concavity of the utility function. Using a generalized version of Topkis’ (1978)

results for supermodular games, namely the single-crossing property of a function and the

Monotone Selection Theorem proposed in Milgrom and Shannon (1994), the model gives rise to

general, unambiguous comparative statics conclusions with a minimal set of conditions, which

are related to the normality/inferiority of the public and private goods. It is shown that the

incentive to free ride increases with the group size as long as the private good is normal, in the

sense that the (extremal) equilibrium individual contribution to the public good decreases with

n. Though the total contribution may still increase with n when the public good is normal. If

the public good is inferior, an extreme situation arises where even the (extremal) equilibrium

total contribution decreases in n. It implies that a “monopoly provision” equilibrium may lead

to the highest amount of public good supply among all possible equilibria, and it also generates

the highest social welfare if the utility function is convex in the private good.

References

Amir, R. (1996a). Continuous stochastic games of capital accumulation with convex transitions.

Games and Economic Behavior 15 (2), 111–131.

Amir, R. (1996b). Cournot oligopoly and the theory of supermodular games. Games and

Economic Behavior 15 (2), 132–148.

Amir, R. (2003). Market structure, scale economies and industry performance. CORE Discus-

sion Paper .

Amir, R. and V. E. Lambson (2000). On the effects of entry in cournot markets. The Review

of Economic Studies 67 (2), 235–254.

22



Bergstrom, T., L. Blume, and H. Varian (1986). On the private provision of public goods.

Journal of public economics 29 (1), 25–49.

Cornes, R. and T. Sandler (1984a). Easy riders, joint production, and public goods. The

Economic Journal 94 (375), 580–598.

Cornes, R. and T. Sandler (1984b). The theory of public goods: Non-nash behaviour. Journal

of public economics 23 (3), 367–379.

Cornes, R. and T. Sandler (1994). The comparative static properties of the impure public good

model. Journal of public economics 54 (3), 403–421.

Cornes, R. and T. Sandler (1996). The theory of externalities, public goods, and club goods.

Cambridge University Press.

Gaube, T. (2000). When do distortionary taxes reduce the optimal supply of public goods?

Journal of Public Economics 76 (2), 151–180.

Gaube, T. (2001). Group size and free riding when private and public goods are gross substi-

tutes. Economics Letters 70 (1), 127–132.

Kerschbamer, R. and C. Puppe (1998). Voluntary contributions when the public good is not

necessarily normal. Journal of Economics 68, 175–192.

Laffont, J.-J. (1988). Fundamentals of public economics. The MIT Press.

Liebhafsky, H. H. (1969). New thoughts about inferior goods. The American Economic Re-

view 59 (5), 931–934.

McGuire, M. (1974). Group size, group homogeneity, and the aggregate provision of a pure

public good under cournot behavior. Public Choice, 107–126.

Milgrom, P. and J. Roberts (1990). Rationalizability, learning, and equilibrium in games with

strategic complementarities. Econometrica: Journal of the Econometric Society , 1255–1277.

Milgrom, P. and J. Roberts (1994). Comparing equilibria. The American Economic Review ,

441–459.

23



Milgrom, P. and C. Shannon (1994). Monotone comparative statics. Econometrica: Journal of

the Econometric Society , 157–180.

Mueller, D. (1989). Public choice II: A revised edition of public choice. Cambridge University

Press.

Novshek, W. (1985). On the existence of cournot equilibrium. The Review of Economic Stud-

ies 52 (1), 85–98.

Olson, M. L. (1965). The logic of collective action. Cambridge, Mass.: Harvard University

Press.

Samuelson, P. A. (1954). The pure theory of public expenditure. The review of economics and

statistics 36 (4), 387–389.

Samuelson, P. A. (1955). Diagrammatic exposition of a theory of public expenditure. The

Review of Economics and Statistics 37 (4), 350–356.

Sandler, T. (1992). Collective action: Theory and applications. Ann Arbor: University of

Michigan Press.

Topkis, D. M. (1978). Minimizing a submodular function on a lattice. Operations research 26 (2),

305–321.

Topkis, D. M. (1979). Equilibrium points in nonzero-sum n-person submodular games. Siam

Journal on control and optimization 17 (6), 773–787.

Varian, H. R. (1994). Sequential contributions to public goods. Journal of Public Eco-

nomics 53 (2), 165–186.

Vives, X. (1990). Nash equilibrium with strategic complementarities. Journal of Mathematical

Economics 19 (3), 305–321.

Vives, X. (1999). Oligopoly pricing: old ideas and new tools. MIT Press (MA).

Warr, P. G. (1982). Pareto optimal redistribution and private charity. Journal of Public

Economics 19 (1), 131–138.

24



Warr, P. G. (1983). The private provision of a public good is independent of the distribution

of income. Economics letters 13 (2-3), 207–211.

Appendix. Proofs

This section provides all the proofs of the paper. Some important notations are introduced

first. A consumer i’s best-response correspondence is defined by

y∗(y−i;w) = argmax{U(
1

p
(w − yi), f(yi + y−i)) : 0 ≤ yi ≤ w}, (5)

where y−i ∈ [0, (n− 1)w].

Alternatively, one may think of a consumer as choosing the total contribution z of the public

good, given (n−1) other consumers’ total contribution y−i. So the best-response correspondence

in (5) can be rewritten in terms of z as follows:

z∗(y−i;w) = argmax{U(
1

p
(w + y−i − z), f(z)) : y−i ≤ z ≤ y−i + w}. (6)

As all consumers are identical, each consumer has the same utility function, so that their best-

response correspondences y∗(y−i;w) and z∗(y−i;w) are also the same. Then, as in Amir and

Lambson (2000), one has the following mapping based on the best-response correspondence (5):

Bn : [0, (n− 1)w] → 2[0,(n−1)w],

y−i →
n− 1

n
(y′i + y−i),

where y′i denotes a best-response level of consumer i’s contribution of the public good when

the total contribution of other (n − 1) consumers is y−i, i.e., y
′
i ∈ y∗(y−i;w). The combined

constraints yi ∈ [0, w] and y−i ∈ [0, (n− 1)w] guarantee that Bn maps some y−i into the same

space [0, (n− 1)w]. The mapping Bn is of particular importance while dealing with symmetric

equilibria. Indeed, any fixed-point of Bn yields a symmetric Nash equilibrium, as it satisfies

y−i =
n−1
n
(y′i + y−i), or y′i =

1
n−1

y−i, which means that every consumer contributes the same

amount of the public good.
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Proof of Lemma 1. Recall that the utility function can be written in terms of xi as

U(xi, f(w − pxi + y−i)) where w − pxi = yi. Following Milgrom and Shannon (1994), I use

the method of dissection to prove the two parts stated in the Lemma. Define Ũ(x, y, t) =

U(x, f(t+y)). Ũ is completely regular, i.e., Ũy = U2f
′ > 0. Simple calculus gives Ũx/|Ũy| = U1

U2f ′ ,

which is strictly increasing in t if and only if (f ′)2(U2U21 − U1U22 − f ′′

(f ′)2
U1U2) > 0, which is

true by Assumption A2. Therefore, Ũ satisfies the strict Spence-Mirrlees condition.

To prove part (i), let y = h(x) = −px + y−i where h(x) = −px + y−i belongs to the richly

parameterized family {α1x + α0 : α1, α0 ∈ R} with α1 = −p and α0 = y−i. By [Milgrom and

Shannon (1994), Theorem 11], since Ũ satisfies the strict Spence-Mirrlees condition, U(x, f(t−

px+y−i)) satisfies the strict SCP in (x; t). Now with the change of variable by letting x = xi and

t = w, it follows that U(xi, f(w−pxi+y−i)) has the strict SCP in (xi;w). Since the constraint set

x ∈ [0, w
p
] is ascending in w, by the Monotone Selection Theorem (Milgrom and Shannon, 1994),

for every y−i, every selection of x∗(y−i;w) = argmax{U(xi, f(w − pxi + y−i)) : 0 ≤ xi ≤ w
p
} is

increasing in w. Therefore, it is verified that the private good is normal.

To prove part (ii), let y = h(x) = −px+w which belongs to the richly parameterized family

{α1x+α0 : α1, α0 ∈ R} with α1 = −p and α0 = w. By [Milgrom and Shannon (1994), Theorem

11], since Ũ satisfies the strict Spence-Mirrlees condition, U(x, f(t−px+w)) satisfies the strict

SCP in (x; t). Now let x = 1
p
(w − yi) and t = y−i, it follows that U(1

p
(w − yi), f(yi + y−i))

has the strict SCP in (1
p
(w− yi); y−i). Since

1
p
(w− yi) is a monotone (linear) transformation of

−yi, it follows by the definition of SCP that for every p and w, U(1
p
(w − yi), f(yi + y−i)) has

the strict SCP in (−yi; y−i). Because the constraint set yi ∈ [0, w] is constant with respect to

y−i, by the Monotonicity Selection Theorem (Milgrom and Shannon, 1994), every selection of

−y∗(y−i;w) is increasing in y−i. Then (ii) follows. Q.E.D.

Remark. Note that if U2U21 − U1U22 − f ′′

(f ′)2
U1U2 < 0 (reversed inequality of A2) and A3

(normality of the public good) hold, then the conclusions of Lemma 1 reverse, i.e., the private

good is inferior and the utility has the strict SCP in (yi; y−i). The idea is that when U2U21 −

U1U22 − f ′′

(f ′)2
U1U2 < 0, by checking Ũx/|Ũy|, one concludes that Ũ ′(x, y, t) = U(x, f(−t + y))

satisfies the strict Spence-Mirrlees condition (with a reversed order on t).

Then by letting y = h(x) = −px+y−i, x = xi and t = −w, if follows that the utility function

U(xi, f(−(−w)−pxi+y−i)) satisfies the strict SCP in (xi;−w). This means that x∗(y−i;w) has
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a tendency to be decreasing in w (increasing in −w), but the Monotonicity Selection Theorem

cannot be directly applied, because the feasibility constraint of xi, [0, w/p] is ascending in w.

Nevertheless, it can still be concluded that every selection of x∗(y−i;w) is decreasing in w along

any interior and continuous part of its graph.7 For the discontinuous part, every selection of

x∗(y−i;w) can only jump downward as w increases. This is true under A3, because then the

public good is normal by Lemma 2, hence y∗(y−i;w) = w − px∗(y−i;w) can only jump upward

as w increases at any discontinuous points.

The arguments provided in the preceding paragraph jointly imply that as long as the graph

of x∗(y−i;w) starts at an interior point when w = w, i.e., x∗(y−i;w) < w, then its graph

will either decrease continuously or jump downward as w increases until it hits zero. Indeed,

x∗(y−i;w) < w is true by A3’.8 And one concludes the normality the the private good.

Similar to Lemma 1, the two conditions also imply that every selection of the reaction

correspondence y∗(y−i;w) is increasing in y−i. The formal proof of the latter is omitted here,

but it is rather procedural, because the constraint yi ∈ [0, w] is constant with respect to y−i, so

that the Monotonicity Selection Therorem can be applied directly.

Proof of Lemma 2. I want to show that the condition U1U21−U2U11 > 0 (A3) implies (i)

U(1
p
(w− yi), f(yi + y−i)) has the SCP in (yi;w), which further implies the normality of yi, and

(ii) U(1
p
(w+y−i−z), f(z)) has the SCP in (z; y−i), which further implies z∗(y−i;w) is increasing

in y−i. Following Milgrom and Roberts (1994), I prove this by the method of dissection.

Define Ũ(x, y, t) = U(1
p
(t−x), y) as a parameterized function of (x, y) (the notation (x, y, t)

used here follows Milgrom and Roberts (1994), which has nothing to do with the notation for

the private good and public good). Ũ is completely regular, i.e., Ũy = U2 > 0. Simple calculus

gives Ũx/|Ũy| = −U1

pU2
, which is strictly increasing in t if and only if U1U21 − U2U11 > 0 (A3).

Therefore, Ũ satisfies the strict Spence-Mirrlees condition.

7This argument uses the notion of Rectangle Monotonicity given in [Amir and Lambson (2000), Proof of
Lemma 3.1]. The formal proof is omitted here, but is analogous to that included in the Proof of Lemma 3, step
(a), to justify the inferiority of the public good, where the Rectangle Monotonicity for y∗(y−i;w) is formally
stated and proved.

8In the footnote attached to A3’, it is assumed that x∗(0;w) < w/p, which implies that x∗(y−i;w) < w/p.
To see this, first inspect the utility function U(xi, f(w − pxi + y−i)), and notice that the parameters w and
y−i are mathematically equivalent when maximizing over xi, hence the utility function also satisfies the strict
SCP in (xi;−y−i) using an analogous proof of that for (xi;−w). Since the constraint of xi, [0, w/p], is constant
with respect to y−i, there is no trouble to apply the Monotonicity Selection Theorem and conclude that every
selection of x∗(y−i;w) is decreasing in y−i. It follows that x

∗(y−i;w) ≤ x∗(0;w) < w/p for any y−i > 0.
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To prove part (i), let y = h(x) = f(x + y−i) where h(x) = f(x + y−i) belongs to the richly

parameterized family {f(x + α2) + α1x + α0 : α2, α1, α0 ∈ R} with α1 = α0 = 0, α2 = y−i. By

[Milgrom and Shannon (1994), Theorem 11], Ũ(x, h(x), t) = U(1
p
(t − x), f(x + y−i)) satisfies

the strict SCP in (x; t). By change of variable, let x = yi and t = w, and it follows that

U(1
p
(w − yi), f(yi + y−i)) has the strict SCP in (yi;w). Now that constraint set yi ∈ [0, w] is

ascending in w, and U(1
p
(w − yi), f(yi + y−i)) has the strict SCP in (yi;w), by the Monotone

Selection Theorem (Milgrom and Shannon, 1994), for every y−i, every selection of y∗(y−i;w)

given in (5) is increasing in w, so the public good is normal.

To verify part (ii), first let y = h(x) = f(x) where h(x) = f(x) belongs to the richly

parameterized family {f(x) + α1x + α0 : α1, α0 ∈ R}. Because Ũ satisfies the strict Spence-

Mirrlees condition, by [Milgrom and Shannon (1994), Theorem 11], Ũ(x, h(x), t) = U(1
p
(t −

x), f(x)) satisfies the strict SCP in (x; t). Now let x = z and t = w + y−i, it follows that

U(1
p
(w+y−i−z), f(z)) has the strict SCP in (z;w+y−i). Fixing w, it follows (by the definition

of SCP) that U(1
p
(w + y−i − z), f(z)) has the strict SCP in (z; y−i). Notice that the constraint

set z ∈ [y−i, y−i + w] is also strictly ascending in y−i. By the Monotone Selection Theorem,

every selection of z∗(y−i;w) is increasing in y−i, for any given w. Q.E.D.

Proof of Proposition 1

Consider the utility maximization (6). First, I show that a symmetric equilibrium exists.

By Lemma 2, every selection of z∗(y−i) is increasing in y−i (the argument w is omitted for

simplicity whenever there is no risk of confusion). Since for any selection y′ ∈ y∗(y−i), there

exists some selection z′ ∈ z∗(y−i) such that z′ = y′ + y−i, it follows that every selection of Bn is

increasing in y−i for any fixed n. By Tarski’s fixed-point theorem, Bn has a fixed point, which

is a symmetric Nash equilibrium by construction.

To prove that no asymmetric equilibrium exists, it is sufficient to show that every selection

of z∗(y−i) is strictly increasing in y−i. Indeed, this would mean that at most one y−i corresponds

to each z′ ∈ z∗(y−i), s.t. z′ = y′i + y−i, with y′i being the best-response to y−i. But then, for

each total contribution z′ of public good, each consumer would contribute the same level of

public good y′i = z′ − y−i, where y−i = (n− 1)y′i, implying symmetry in the equilibrium.

Consider an arbitrary selection of z∗(y−i), denoted by z̃. To prove that the mapping y−i →

z∗(y−i) is strictly increasing, let us assume the contrary: There exist some y1 and y2, with
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y1 > y2, such that z̃(y1) = z̃(y2), since every selection of z∗(y−i) has been proved to be (weakly)

increasing in y−i. Indeed, z̃(y−i) will be constant for all y−i ∈ [y2, y1], thus both z̃(y1) and z̃(y2)

can be without loss of generality taken to be interior solutions to (6), so each of them satisfies

the F.O.C.,

U i
1(
1

p
(w − z + yj), f(z))(−

1

p
) + U i

2(
1

p
(w − z + yj), f(z))f

′(z) = 0, j = 1, 2,

where z ≡ z̃(y1) = z̃(y2). Then the F.O.C. implies:

U i
1(
1

p
(w − z + y1), f(z))(−

1

p
) + U i

2(
1

p
(w − z + y1), f(z))f

′(z)

= U i
1(
1

p
(w − z + y2), f(z))(−

1

p
) + U i

2(
1

p
(w − z + y2), f(z))f

′(z),

or

− 1

p

U i
1(

1
p
(w − z + y1), f(z))− U i

1(
1
p
(w − z + y2), f(z))

1
p
(y1 − y2)

+ f ′(z)
U i
2(

1
p
(w − z + y1), f(z))− U i

2(
1
p
(w − z + y2), f(z))

1
p
(y1 − y2)

= 0.

This holds for all y−i ∈ [y2, y1]. Hence, I can take a limit as y2 → y1 (so 1
p
y2 → 1

p
y1), and it

follows

−1

p
U i
11 + U i

21f
′ = 0 at (y1, z). (7)

But this is easily seen to violate Assumption A3, because if one replaces p by the F.O.C.,

−1
p
U1 + U2f

′ = 0, (7) implies U2U11 − U1U21 = 0, contradicting A3. This leads us to the

conclusion that z̃(y−i) is strictly increasing and thus no asymmetric equilibrium exists. Q.E.D.

Proof of Proposition 2

1. Consider the mapping introduced above:

Bn : [0, (n− 1)w] → 2[0,(n−1)w],

y−i →
n− 1

n
(y′i + y−i).
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By the Monotonicity Theorem (Milgrom and Shannon, 1994), the fact that the utility function

is continuous and has the SCP in (z; y−i), and the action set [y−i, y−i + w] is compact and

ascending implies that the maximal and minimal selections of the arg max z∗(y−i) given in

(6), z̄(y−i) and z(y−i) exist (the maximizer is nonempty by continuity and compactness). It

means that the maximal and minimal selections of Bn, denoted by B̄n and Bn respectively, also

exist. And it follows from the construction of Bn that the largest equilibrium value of the joint

contribution of n− 1 players, ȳn−i, is also the largest fixed point of B̄n. Since
n−1
n

is increasing

in n, B̄n(y−i) is increasing in n for every fixed y−i. Then the largest fixed point of B̄n, which

is ȳn−i, is increasing in n due to Milgrom and Roberts (1990) (treating n as a parameter). A

similar argument establishes that yn−i
is also increasing in n.

2. Since ȳn−i is increasing in n and every selection of z∗(y−i) is increasing in y−i, it follows

that the largest total equilibrium contribution to the public good, z̄n = z̄(ȳn−i), is also increasing

in n. The same arguments hold for the smallest total equilibrium contribution zn = z(yn−i
).

3. By the Envelop Theorem, the indirect utility function, V (w, y−i) = max0≤yi≤w U(1
p
(w −

yi), f(yi + y−i)), is strictly increasing in other players’ joint contribution y−i, as

∂V (w, y−i)

∂y−i

=
∂U(1

p
(w − y′i), f(y

′
i + y−i))

∂y−i

= U2f
′ > 0.

where y′i ∈ y∗(y−i;w). Since ȳ
n
−i and yn−i

are increasing in n, the extremal values of the indirect

utility function, V̄ n = V (w, ȳn−i) and V n = V (w, yn−i
) are also increasing in n. Q.E.D.

Proof of Proposition 3

By Lemma 1 and 2, the slope of every selection of y∗(y−i) is between the interval [−1, 0].

Then the uniqueness of equilibrium follows from a quite standard argument given in Amir

(1996a). Here an alternative proof is presented. By Proposition 1, no asymmetric equilibrium

can exist. Assume towards contradiction that there exist two symmetric Nash equilibria, de-

noted by (y, ..., y) and (ŷ, ..., ŷ), y ̸= ŷ. Suppose y > ŷ, but then (n − 1)y > (n − 1)ŷ where

y ∈ y∗((n − 1)y) and ŷ ∈ y∗((n − 1)ŷ), implying that the reaction curve is strictly increasing

between the two points. This contradicts the fact that the slope of y∗(y−i) is bounded above

by 0, thus the equilibrium is unique.

Because every selection of y∗(y−i) is decreasing in y−i, and the equilibrium value of yn−i (the
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upper and lower bars dropped due to uniqueness) is increasing in n by Proposition 2, then the

individual contribution to the public good, yni ∈ y∗(yn−i) is decreasing in n. The opposite holds

for the private good consumption as xn
i = 1

p
(w − yni ). Q.E.D.

Proof of Lemma 3. The proof uses the method of dissection and is analogous to that

used for Lemma 2. Define Ũ(x, y, t) = U(1
p
(−t − x), y). Simple calculus gives Ũx/|Ũy| = −U1

pU2
,

which is strictly increasing in t if and only if U1U21 − U2U11 < 0 (A3’). Therefore, Ũ satisfies

the strict Spence-Mirrlees condition.

I first prove part (ii). Let y = h(x) = f(x). By [Milgrom and Shannon (1994), Theorem

11], Ũ(x, h(x), t) = U(1
p
(−t − x), f(x)) satisfies the strict SCP in (x; t). Now let x = z and

t = −(w + y−i), it follows that U(1
p
(w + y−i − z), f(z)) has the strict SCP in (z;−(w + y−i)).

Fixing w, it follows (by the definition of SCP) that U(1
p
(w + y−i − z), f(z)) has the strict SCP

in (z;−y−i).

Going back to part (i), let y = h(x) = f(x + y−i). By [Milgrom and Shannon (1994),

Theorem 11], Ũ(x, h(x), t) = U(1
p
(−t − x), f(x + y−i)) satisfies the strict SCP in (x; t). Now

let x = yi and t = −w, and it follows that U(1
p
(w − yi), f(yi + y−i)) has the strict SCP in

(yi;−w). I want to show that the arg max of (5), y∗(y−i;w) is decreasing in w (in terms of each

of its selection), but the Monotone Selection Theorem (Milgrom and Shannon, 1994) cannot be

directly applied here because the constraint set yi ∈ [0, w] is ascending in w. Instead I show it

in two steps (just as the way I dealt with the private good in the Remark of Lemma 1): (a)

every selection of y∗(y−i;w) must be decreasing in w along any interior continuous part of itself

and, (b) it cannot have upward jumps.

Step (a) uses the idea of Rectangle Monotonicity discussed in [Amir and Lambson (2000),

Proof of Lemma 3.1]. Formally, suppose (a) does not hold, then there exists a selection of

y∗(y−i;w), part of which is interior with respect to the constraint set and is continuously

increasing in w. Consequently, there must exist two points (supposedly close to each other) on

this part of y∗(y−i;w) such that the rectangle enclosing the graph between the two points is fully

inscribed in the constraint set, i.e., y1 ∈ y∗(y−i;w1) and y2 ∈ y∗(y−i;w2) such that w1 < w2,

y1 < y2, and y1 ∈ [0, w2], y2 ∈ [0, w1]. Note that both continuity and interiority are crucial

to finding two such points. But then there is a contradiction. To see this, drop the argument

y−i and write U(1
p
(w − yi), f(yi + y−i)) as Û(yi;w) for simplicity. Then Û(y2;w2) ≥ Û(y1;w2)
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because y2 ∈ y∗(y−i;w2), but then because U(1
p
(w − yi), f(yi + y−i)) has the strict SCP in

(yi;−w) and −w2 < −w1, it follows that Û(y2;w1) > Û(y1;w1), which contradicts the fact

that y1 ∈ y∗(y−i;w1). The proof of step (a) is thus complete. Step (b) is a direct consequence

of Assumption A2, which leads to the normality of the private good by Lemma 1. Therefore,

x∗(y−i;w) can only have upward jumps in w, and thus y∗(y−i;w) = w − px∗(y−i;w) can only

have downward jumps.

Now by assumption A3’ (see footnote), the graph of y∗(y−i;w) starts at some interior point(s)

at the lowest wealth level, and is continuously decreasing possibly with downward jumps, until

it hits zero where it stays thereafter. Therefore, the public good is inferior and the proof of

part (i) is complete. Q.E.D.

The following Lemma is crucial to proving Proposition 4, which gives a full characterization

of the graph of a player’s reaction correspondence y∗(y−i). With the normality of the private

good and the inferiority of the public good, y∗(y−i) must be decreasing at slopes no more than

-1 and can only have downward jumps at the discontinuous points. The arguments are similar

to that used in the proof of Lemma 3, where y∗(y−i;w) is shown to be decreasing in w despite

of the ascending constraint set [0, w]. The idea is to use the notion of Rectangle Monotonocity

given in Amir and Lambson (2000), thus any continuous part of y∗(y−i) must be decreasing at

slopes less than -1, and the fact that every selection of y∗(y−i) must be decreasing by A2.

Lemma 4. If A2 and A3’ hold, then every selection of the reaction correspondence, ỹ ∈ y∗(y−i),

(i) must have slopes no greater than −1 along any continuous, interior (below w) part of its

graph, (ii) cannot have upward jumps.

Proof. Pick an arbitrary selection ỹ(y−i) ∈ y∗(y−i). By Lemma 1, every selection of

y∗(y−i) is decreasing, hence ỹ(y−i) cannot have upward jumps, which proves part (ii).

To show part (i), one can equivalently show that z̃(y−i) = ỹ(y−i) + y−i is decreasing in

y−i along any continuous part of its graph that is interior with respect to the constraint set

z ∈ [y−i, w + y−i]. By Lemma 3, A3’ implies that U(1
p
(w + y−i − z), f(z)) has the strict

SCP on (z;−y−i), indicating a tendency of z∗ to decrease in y−i. Because the constraint set

z ∈ [y−i, y−i+w] is ascending in y−i, the Monotone Selection Theorem (Milgrom and Shannon,

1994) cannot be directly applied. However, one can show instead that any interior, continuous
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part of the graph of z̃(y−i) must be decreasing in y−i (i.e., corresponding to the Rectangle

Monotonicity property as in Amir and Lambson, 2000). Assume towards contradiction that

an interior continuous part of z̃(y−i) is not decreasing, then along this part of the curve there

must exist two points z1 = z̃(y1) and z2 = z̃(y2), y1 < y2, supposedly close to each other such

that the rectangular enclosing the graph of the two points is fully inscribed in the constraint

set, i.e., z1 ∈ [y2, y2 + w] and z2 ∈ [y1, y1 + w]. Note that both continuity and interiority are

crucial to finding two such points. But then there is a contradiction. Drop the argument w

and write U(1
p
(w + y−i − z), f(z)) as Û(z; y−i). Then Û(z2; y2) ≥ Û(z1; y2) because z2 = z̃(y2).

But then because Û(z; y−i) has the strict SCP in (z;−y−i) and −y2 < −y1, it follows that

Û(z2; y1) > Û(z1; y1), contradicting the fact that z1 = z̃(y1), which proves part (i).

Part (i) and (ii) allow us to fully characterize the graph of ỹ(y−i) at any wealth level w

if it starts strictly below w when y−i = 0, i.e., the standalone contribution is strictly below

w, since neither (i) or (ii) rules out the possibility that ỹ(y−i;w) = w for small y−i’s (let us

briefly recover the argument w in the reaction curve). For the standalone contribution to be

strictly below w for any wealth level w, i.e., ỹ(0;w) < w, one only needs it to hold at the lowest

wealth level, say, w, which is assumed true (see the footnote attached to A3’). Because then

ỹ(0;w) ≤ ỹ(0;w) < w < w, the first inequality derived from Lemma 3, i.e., the public good is

inferior under A2 and A3’.

To summarize, any selection of y∗(y−i;w) starts at an interior point (below w) when y−i = 0,

and then either continuously decreases in y−i with slopes no higher than -1 or has downward

jumps at any discontinuous points, until it hits 0 and stays thereafter. Q.E.D.

Proof of Proposition 4

1. First, I want to prove the existence of a “monopoly provision” equilibrium where one

consumer contributes to the public good and the other (n − 1) consumers do not contribute

at all. Pick an arbitrary y0 ∈ y∗(0), which is the standalone contribution of a player, y0 > 0

(validated by the footnote attached to A3’). For the “monopoly provision” scenario to be a

Nash equilibrium, it suffices to show y∗(y0) = {0}. Suppose not, that there is some y1 ∈ y∗(y0)

such that y1 > 0, then there are two best-responding points y0 ∈ y∗(0) and y1 ∈ y∗(y0), such

that
y1 − y0
y0 − 0

=
y1
y0

− 1 > −1,

33



contradicting the fact that the slopes of y∗(y0) have slopes no greater than -1 by Lemma 4.

Hence (y0, 0, ..., 0) is a Nash equilibrium.

2. Next, I want to show whenever a symmetric equilibrium exists in an m-player game, it

must be unique. Indeed, the existence of a symmetric equilibrium is generally not guaranteed

in submodular games (except in two-player games where submodular games can be turned into

supermodular games by taking the reversed order of one player’s action). On the graph, it is

easily seen that y∗(y−i) may fail to intersect the line y−i/(n − 1) due to possible downward

jumps, while the intersection defines a symmetric equilibrium. However, if such a symmetric

equilibrium exists, it must be unique, because the strongly decreasing y∗(y−i) (i.e., any of its

selections has slopes no more than -1) and the upward-sloping line y−i/(n − 1) can at most

intersect once.

Now assume such a symmetric equilibrium exists in an m-player game, with each player

contributing ym > 0 to the public good, i.e., ym ∈ y∗((m− 1)ym). Then for the n-player game,

n > m, I claim that m players each contributing ym with the other (n−m) players contributing

nothing constitutes an equilibrium. It suffices to show y∗(mym) = {0}. The proof is similar to

part 1. Suppose not, so that there exists y2 > 0 such that y2 ∈ y∗(mym). Now consider the two

points ym ∈ y∗((m− 1)ym) and y2 ∈ y∗(mym), and it follows

y2 − ym
mym − (m− 1)ym

=
y2
ym

− 1 > −1,

contradicting the fact that y∗(y−i) can only have slopes no greater than -1 asserted by Lemma 4.

Thus it is proved that them-player symmetric equilibrium also constitutes a partially symmetric

equilibrium in an n-player game, with the other (n−m) players contributing nothing.

3. Lastly, I want to show that there exists no other asymmetric equilibria except the ones

mentioned in part 2. That is, in any Nash equilibrium, there are no two active contributors (i.e.,

with yi > 0) who contribute different levels of the public good. In light of the characterization

of the graph of y∗(y−i) given in Lemma 4, it can be inferred that the graph of any selection of

z∗i (y−i) = y∗(y−i) + y−i must start at an interior point below w, decrease in y−i with downward

jumps allowed (call this the decreasing part), until it hits the lower bound y−i and stays on

it thereafter (call this the increasing part). The decreasing part is where the player makes
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positive contributions (i.e., is active), and the increasing part is where the player contributes

nothing. At this point, it suffices to show that every selection of z∗(y−i) is strictly decreasing

in y−i along its decreasing part, because then there is only one value of y−i corresponding to

each value of z along the decreasing part, meaning the active players must contribute at the

same level. The arguments needed to show strictly decreasing z∗i (y−i) are the same as those

stated to show strictly increasing z∗i (y−i) in the Proof of Proposition 1: in the same manner,

one needs to find two points to construct equation (7), which leads to a contradiction toward

Assumptions A3’. The proof is omitted to conserve space. Q.E.D.

Proof of Proposition 5

A symmetric equilibrium is defined as the intersection of y∗(y−i) and y−i/(n − 1). Recall

that by Lemma 4, y∗(y−i) is strongly decreasing in the sense that every selection of it can only

have slopes no greater than -1, and can only jump downward. When n increases, y−i/(n − 1)

shifts downwards (i.e., rotates clockwise), and if it still intersects with y∗(y−i), the equilibrium

value of yn−i must increase. That is, if the best-reply correspondence y∗(y−i) intersects with

both y−i/(m − 1) and y−i/(n − 1), m < n, then ym−i < yn−i, and apparently both values are

positive since the intersection can only happen above the horizontal axis.

The comparative statics conclusions then follow in a direct way. Since any selection of

y∗(y−i) is strictly decreasing in y−i before it hits zero, yni < ymi . Since any selection of z∗(y−i)

is strictly decreasing in y−i before it hits y−i, z
n < zm. Lastly, V n > V m follows from the fact

that V (w, y−i) is strictly increasing in y−i by the Envelop Theorem, which has been shown in

the Proof of Proposition 2 (part 3). Q.E.D.

Proof of Corollary 6

In an n-player game, let y1 denote the “monopoly contribution” amount, i.e., y1 ∈ y∗(0;w),

and assume there exists an partially symmetric equilibrium where there are m contributors each

donating ym to the public good and the other n −m players do not donate at all, m ∈ [2, n].

Then the welfare associated with the two equilibria are, respectively,

W1 = U(
1

p
(w − y1), f(y1)) + (n− 1)U(

w

p
, f(y1))

Wm = mU(
1

p
(w − ym), f(mym)) + (n−m)U(

w

p
, f(mym)).
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Since m players each contributing ym also constitutes a Nash equilibrium in an m-player

game, by Proposition 5, y1 = z1 > zm = mym. Therefore, U(w
p
, f(y1)) > U(w

p
, f(mym)) as

U2 > 0 and f ′ > 0. Then W1 > Wm if

U(
1

p
(w − y1), f(y1)) + (m− 1)U(

w

p
, f(y1)) > mU(

1

p
(w − ym), f(mym)).

Indeed,

mU(
1

p
(w − ym), f(mym)) < U(

1

p
(w −mym), f(mym)) + (m− 1)U(

w

p
, f(mym))

< U(
1

p
(w − y1), f(y1)) + (m− 1)U(

w

p
, f(y1)),

the first inequality is from U11 > 0 while the second inequality is because y1 ∈ argmaxyi∈[0,w] U(1
p
(w−

yi), f(yi)) and mym < y1 ≤ w, so U(1
p
(w −mym), f(mym)) ≤ U(1

p
(w − y1), f(y1)). Q.E.D.
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