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Abstract

We set out to solve the bimodal puzzle regarding campaigns’ outcomes in reward-based

crowdfunding: Most campaigns either fail with little fund raised or succeed by a small margin.

The proposed analytical model consists of a sophisticated entrepreneur and boundedly rational

buyers whose decisions are based on a meaningful behavior rule associated with network exter-

nalities and time effects. Buyers are assumed to bear hassle costs for pledging and thus only

pledge when the campaign has progressed well by their arrival time. The model suggests that

the campaign’s success hinges on reaching a critical mass at an early stage, with the bimodal

funding outcomes neatly predicted by the closed-form solution. The model also yields herding

dynamics which is argued to be (bounded) rational and efficient. Rich economic and manage-

rial implications about the best timing to utilize the social network, the caveats in designing

discriminatory prices, the (stricter) quality requirement due to buyers’ pledging failure risk for

campaigns to succeed in crowdfunding, and on targeted marketing, campaign monitoring, re-

campaigning decision... are drawn from the model, giving sights for the entrepreneur to better

steer strategy and achieve success in crowdfunding.

Keywords: Behavioral crowdfunding, critical mass, bounded rationality, network effects, ra-

tional herding

1 Introduction

With the progressing of the Information Age and the development of Internet Technology, crowd-

funding emerges as a new way in which firms interact with outside stakeholders (Allon and Babich,

2020). Utilized mostly by startups as a new capital source (Agrawal et al., 2014; Belleflamme et al.,

2015), a powerful marketing device (Burtch et al., 2013; Mollick, 2014), and sometimes a demand

revelation tool (Chemla and Tinn, 2019), crowdfunding provides rich research opportunities in

the fields of marketing and operations management (Allon and Babich, 2020). Despite a rapidly

growing empirical literature on this new topic, the theory counterpart is relatively limited, with
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a handful of models approaching different aspects of crowdfunding: comparison between different

fundraising forms (Belleflamme et al., 2014), screening and moral hazard (Strausz, 2017), funding

dynamics and the role of donors (Deb et al., 2019), etc.

Among other crowdfunding forms, reward-based crowdfunding features an All-or-Nothing pro-

vision point policy. A funding goal needs to be pre-specified and satisfied before the pre-determined

deadline, in which case the entrepreneur receives all funds (less a platform fee) and starts produc-

tion. Failing to reach the goal results in full refunds to buyers, and thus nothing to the entrepreneur.

Although some crowdfunding platforms (e.g., Indiegogo) provide a Keep-it-All option which allows

the entrepreneur to get all collected funds without achieving the goal, All-or-Nothing is hitherto

the dominant form imposed by the biggest such platform, Kickstarter.

Figure 1: Most campaigns either fail with little funds collected or succeed by a small margin

Note: The data contains 184,828 Kickstarter projects from April 2009 to June 2020. A thin tail above 3.0 is not
displayed. Data source: Web Robots.

In a macro view, the fundraising dynamics is known to exhibit several noteworthy features.

First, despite some well-known remarkable successes (e.g., Pebble Watch), shown in Figure 1, most

campaigns fall in two areas regarding their funding outcomes, ending up either barely funded (0-

10% funded) or just adequately funded (100%-110%) (Alaei et al., 2016; Mollick, 2014). Second,

the entrepreneur’s own social network seems to play an important role in contributing (Agrawal

et al., 2014; Mollick, 2014) especially in the early funding stage (Agrawal et al., 2011). Third,

early-stage contributions are positively related to the campaign’s success probability (Gao et al.,

2019). Specifically, the funding outcome seems to hinge on reaching a critical mass early on after

the campaign starts, while failing to do so may make buyers’ funding propensity drop dramatically

and may lead to a potential failure (Li et al., 2020). Fourth, evidence of rational herding is

found on many crowdfunding platforms (Astebro et al., 2019; Wei et al., 2021; Zhang and Liu,

2012). Understanding the cause and mechanism underlying these phenomena is crucial for any
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entrepreneur who wants to pursue success on these new and influential platforms.

This paper sets out to solve the two-spike puzzle, or the bimodal pattern shown in Figure 1: Why

do most campaigns either fail with little funds collected or succeed by a small margin? Following

the literature of behavioral industrial organization wherein rational firms often optimize against

a group of myopic and sometimes naive buyers (e.g., Gabaix and Laibson, 2006), we propose an

analytical model with a sophisticated entrepreneur and a crowd of boundedly rational buyers whose

decisions are based on a meaningful behavioral rule associated with network externalities and time

effects (Li et al., 2020). We show that buyers’ hassle costs coupled with the behavioral pledging

rule are sufficient to explain the two spikes and other afore-mentioned crowdfunding features.

To model buyer’s pledging decision, the major buyer-side risk considered is pledging failure risk :

If the campaign fails, buyers get refunds but lose all hassle costs. Hassle costs capture the fact that:

After pledging, some buyers may actively engage in monitoring the campaign, thus may suffer from

feelings of loss when the campaign fails. Buyers also bear the opportunity cost of committing the

money and forgoing the outside options such as bank deposit (Chakraborty et al., 2021). These

hassle costs hinder buyers from pledging to badly performing campaigns that seem to fail. While the

theory literature abounds in discussions of other buyer-side risks related to asymmetric information

or moral hazard, this elementary pledging failure risk, which is also the key risk associated with

crowdfunding’s special All-or-Nothing policy, remains less than fully addressed.

Taking a step back, among those theory studies that did bring up the pledging failure risk (e.g.,

Chakraborty et al., 2021; Deb et al., 2019), buyers are often equipped with sophisticated knowledge

of the market demand, the arriving pattern and behavior of other players, and update beliefs by

Bayes’ rule. We point out that the plausibility of this perfect rationality and the notion of game

theoretic equilibrium are in doubt in the crowdfunding context, as buyers hardly know all these

market characteristics or can achieve perfect coordination. Instead, simple rules of updating infor-

mation may be more plausible than full Bayesian updating (Loch and Wu, 2007) in the setting.

In fact, perfect rationality does not always prevail due to unavailability of information (as in our

model), tendency to follow routinized behavior (Rosenthal, 1993), costly gathering and manipula-

tion of information (Radner, 1996), to list a few. In contrast, we let buyers be boundedly rational

and make decisions based on publicly observable information via a behavioral rule associated with

network externalities and time effects, two factors found to be relevant in Li et al. (2020).

This paper contributes to the crowdfunding literature in two aspects, namely, to explain and to

enlighten. First, the proposed behavior model explains the afore-mentioned crowdfunding features

theoretically. It predicts two high-probability events, namely barely-funded failures and small-

margin successes, and demonstrates that sufficient demand plus reaching a critical mass early on
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are two major forces for campaign success. Though these two forces have been investigated by

existing literature empirically(e.g., Li et al., 2020), the underlying mechanism, in particular, how

different types of buyers account for campaign’s success or failure, is yet to be clarified. This paper

adds to the literature by identifying that early support (when) from dedicated buyers (who) is one

crucial factor driving good campaigns to success, with sufficient common buyers (or, total demand)

being another prerequisite. So failures may result from either bad luck or bad quality. The model

also underpins herding in crowdfunding, another empirically confirmed phenomenon, and holds

that such herding is both rational and (with high probability to be) efficient.1

Second, based on the behavioral rule, we derive rich economic and managerial implications. In

the extension, we show that early support from social network is more effective than last-minute

support, and alarm that discriminatory prices need to be designed with caveats. Economically, we

argue that qualitative projects eligible to initiate production in traditional markets may still be

doomed to failure in crowdfunding due to buyer’s pledging failure risk, thus crowdfunding’s fruits

may only be in the reach of sufficiently high-quality projects. Managerially, the model suggests for

efficient marketing, the entrepreneur should target the right crowd (dedicated buyers) at the right

time (early stage); it predicts funding dynamics that can be monitored, and potentially corrected

by the entrepreneur when the sign of failure shows up; it also provides clues for the entrepreneur

to distinguish back-quality project from back luck, thus advising in whether to re-campaign or not.

The rest of the paper is arranged as follows. Section 2 provides a crowdfunding theory literature

review. We present the baseline model in Section 3, extensive discussions in Section 4. Economic

and managerial implications are summarized in Section 5. Section 6 concludes the paper.

2 Literature Review

There is a rapidly growing empirical literature for crowdfunding, but rather limited on the theory

side. For the latter, several dynamics models are proposed to address some, but different from this

paper, bimodal patterns of crowdfunding. Alaei et al. (2016) utilized a novel stochastic process,

namely Anticipating Random Walk, to show that crowdfunding projects either succeed with high

probability or fail with certainty. Deb et al. (2019) studied a dynamic game between buyers and

a donor who wants to nudge the campaign towards success with a minimal budget, and proved

donations can have spikes only at the start or the deadline, a prediction consistent with their high-

frequency data collected from Kickstarter. Ellman and Fabi (2019) explained the U-shape bidding

1All insights are illustrated in a simple baseline setting, while the supplement material includes robustness checks
with regard to demand uncertainty, strategic waiting, random arriving time, and greater buyer heterogeneity. Indeed,
the two-spike feature emerges as such a strong, easily derived outcome following the behavioral rule that it naturally
extends to small, realistic perturbations of the basic assumptions.
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profile in a dynamic game with endogenous inspection costs. In addition, static models extend

the scope to other crowdfunding issues, including asymmetric information (about project quality)

and signaling (Chakraborty and Swinney, 2021), pre-ordering (reward-based) versus profit-sharing

(equity) crowdfunding (Belleflamme et al., 2014), crowdfunding as a demand learning tool (Chemla

and Tinn, 2019), optimal product line design (Hu et al., 2015), optimal campaign design for the

price and duration (Zhang et al., 2017) and for the funding form (Chang, 2020), crowdfunding

interacting with traditional financing methods (Belleflamme et al., 2010; Babich et al., 2020), etc.

Though moral hazard is a potential risk in crowdfunding, statistics suggest that blatant fraud

is actually rare except for frequent delivery delays (Mollick, 2014). Strausz (2017) showed that an

information-restricted and payout-deferred mechanism can help prevent moral hazard, as buyers

can defer their payout to the after-market once the campaign succeeds. Chang (2020) echoed the

role of retail market in deterring moral hazard.

Herding in crowdfunding is studied by several empirical works. Astebro et al. (2019) and Zhang

and Liu (2012) found evidence of herding in equity and debt crowdfunding markets respectively,

both agreeing with the rational herding hypothesis, i.e., buyers do not naively mimic their peer

backers’ behavior but actively engage in information aggregation and observational learning. Wei

et al. (2021) documented herding in reward-based crowdfunding with a pre-funding stage, as a way

for uninformed buyers to avoid costly information acquisition. Our model tries to underpin the

(bounded) rationality and efficiency of herding for reward-based crowdfunding.

The most relevant theory study to ours is Chakraborty et al. (2021) (CS). Both studies dis-

tinguish buyers by their non-valuation types, address the risk of campaign failure, and extend the

model to menu designs. However, CS focused on strategic waiting buyers who may forget to return.

The provision of early-bird discounts is thus explained as to induce no-delay equilibrium that entails

higher revenue. In contrast, strategic waiting is not the focus of this paper (though its impact will

be analyzed in the supplement material), where the behavioral rule associated with pledging failure

risk weigh in instead. Another difference lies in the assumption of buyers’ knowledge. CS took a

conventional path and assumed buyers have a common knowledge of the underlying (uniform) de-

mand and update beliefs by Bayes rule. In contrast, we impose no publicly inaccessible knowledge

on buyers and resort to behavioral rule to explain the stylized facts.

The behavior rule we specify is intimately related to the empirical study of Li et al. (2020). They

found buyers’ perceived campaign success probability is positively related to network externalities

(percentage funded prior to the buyer’s arrival), negatively related to the time effects (elapsed time).

While they employed a hazards model to fit with data, as a theory counterpart, we adopt a simple

linear relationship for tractability. Our model echos some of their empirical findings, such as high-
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value projects may fail if not achieving a critical mass early on due to unfavorable random arrivals

(bad luck), and that early contribution (promotion) is more efficient than last-minute support.

3 The Model

In this section, we introduce the baseline behavioral model, predict that a campaign either fails

with little funds raised or succeeds by a small margin, and relate these two funding outcomes to

two high-probability events: the pledging cascade (or herding) starts early, or never starts.2 To

conserve space, all proofs are moved to the supplement material (hereafter referred to as the Sup).

3.1 Model setup and assumptions

3.1.1 Assumptions about the entrepreneur

An entrepreneur wants to finance the production of an innovative consumption good via crowd-

funding. The production involves a fixed cost of K and a unit marginal cost c ∈ (0, 1). To initiate

a crowdfunding campaign, among other preparations, the entrepreneur needs to design three eco-

nomically meaningful factors: the monetary goal, the campaign’s duration, and the product price.3

First, following Belleflamme et al. (2014) and Zhang et al. (2017), we assume that the entrepreneur

wishes to finance exactly the amount of the production cost, thus the monetary goal is K + cG,

where G is the number of backers the entrepreneur wants to capture (thereafter referred to as the

backers’ goal).4 Second, crowdfunding platforms usually restrict the campaign’s duration within a

certain length (maximally 60 days for Kickstarter). For simplification, we assume the entrepreneur

adopts an exogenously determined duration, either the maximal length for the longest public expo-

sure, or a specific deadline constrained by some production timeliness requirement (e.g., the mascot

design for a festival).5 Lastly, notice the entrepreneur’s pricing decision is equivalent to deciding

the backers’ goal G, since with a single price p, we have p = K+cG
G . Hence, the backers’ goal (or

price) is the focal decision variable of the model.6

2This simple, tractable model delivers the basic intuitions and insights in a succinct manner, despite its highly-
stylized nature, since a lot of realistic factors such as demand uncertainty, buyers’ heterogeneity (at a higher degree)
and arrival patterns are oversimplified to this end. These factors are addressed in the supplement material using a
combination of theoretic reasoning and numerical examples.

3For now we restrict attention to a single-pricing scenario, while price discrimination is discussed in Section 4.
4Note each backer is assumed to need at most one unit of the good.
5In fact, strategic duration design is meaningful in this context only when used as a device to signal the campaign’s

quality (shorter duration may reflect the confidence of capturing all needed backers in a timely manner), or when the
temporal discounting of payoffs is taken into account (as in Zhang et al., 2017), both not being the case in our model.

6Hu et al. (2015) made an extensive discussion on the crowdfunding menu design. Combining heterogeneous
product valuation and random arriving, they derived the optimal pricing strategy under different scenarios. However,
they adopted a two-period model wherein buyers have no transaction cost associated with their pledging decisions,
and focused on the coordination between different types of buyers. In contrast, this paper explores how hassle costs
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The entrepreneur’s objective is to maximize the campaign’s ex-ante success probability (follow-

ing Alaei et al., 2016). Indeed, being a success-probability maximizer instead of a profit maximizer

is not at odds in the crowdfunding context. Besides financing, entrepreneurs frequently use crowd-

funding as a “proof-of-concept” vehicle (Alaei et al., 2016) for various purposes, such as revealing

the aggregate demand (Chemla and Tinn, 2019), marketing a new product (Burtch et al., 2013;

Mollick, 2014), attracting further funding from venture capital or business angles (a famous exam-

ple is Pebble Watch in Mollick, 2014), etc. As success in crowdfunding means more than fulfilling

the funding needs, the objective is indeed not restricted to revenue (Allon and Babich, 2020).

To fold up, the entrepreneur’s problem is to choose an optimal backers’ goal G (or price p)

to maximize the probability that the campaign achieves its monetary goal of K + cG before the

specified deadline. As will become clear later, the backers’ goal instead of price as the decision

variable better captures the underlying trade-off, thus is mostly invoked in the following analysis.

3.1.2 Assumptions about the buyers

After the campaign is launched, buyers arrive sequentially and make a pledging decision (buy or

leave) once they observe all public information of the campaign. Some crowdfunding platforms

facilitate the option of strategic waiting for hesitating backers, allowing them to return to the

campaign later, mostly until the end of the campaign, as a way to reduce the pledging risk in

case the campaign fails (Chakraborty et al., 2021). Therefore, if the buyer is not impressed by

the current campaign progress (i.e., she decides to leave at the moment), she might come back at

the end of the campaign to make the pledging decision once again. On the other hand, we posit

that if the buyer is already willing to pledge given the current progress, she would refrain from

waiting and buy right away.7 Under these assumptions, the pledging dynamic should remain the

same as one without any wait-and-see option, except for the possibility that some of the leaving

buyers may return at the end to decide again. Therefore, we start the model without considering

the wait-and-see option and leave such discussion to the Sup.8

Buyers are, to this end, homogeneous in their product valuation v, normalized to 1, but het-

erogeneous in their hassle cost ∈ {0, h}. Indeed, hassle cost should be the key ingredient in such

context where full refund is guaranteed, and where asymmetric information, moral hazard are

abstracted out. It includes the efforts of monitoring the campaign, the opportunity cost of com-

enter buyers’ decision-making procedure via a behavioral channel and thereby affect the campaign’s outcome.
7A possible justification is that the option of strategic waiting may be associated with additional costs (time,

sign-up, etc.), thus discouraging such buyers to delay their pledge.
8In addition, strategic waiting involves high degree of unpredictableness, such as how many leaving buyers would

choose to come back, and how they might behave/coordinate when they return at the deadline. We thus posit that
the entrepreneur does not further take buyers’ option of strategic waiting into account for campaign design.

7



mitting the money and forgoing the outside options (Chakraborty et al., 2021; Li et al., 2020). In

other words, hassle costs lie behind backers’ pledging risk in fear of campaign failure. For now, we

adopt a dichotomy of buyer’s type regarding their heterogeneous hassle costs.9 Common buyers

represent a conservative type who has a positive hassle cost h. They are concerned whether the

campaign can end up successfully and only pledge when such odds are high. Dedicated buyers

have no hassle cost, willing to pledge as long as they like the project and find the price reasonable.

The dedicated buyers’ zero hassle cost may be explained from at least three different angles.

First, such buyers may have pledged out of impulse (as documented in Hausman, 2000) and have

no plan to engage in tracking the campaign afterwards. Second, they may gain utilities from the

supporting action itself.10 Third, these backers may receive “community benefits” (Belleflamme

et al., 2014) as they participate in developing and customizing the product, and as they establish

positive relationships with the entrepreneur via customer engagement (Pansari and Kumar, 2017).

These additional utilities cancel out the hassle costs. Along the logic, dedicated buyers could be

identified as the impulse consumers for a certain product category (e.g., electronics fanatics for

a crafted mechanical keyboard), engaging customers who value the interaction in the campaign

community, unconditional supporters from the entrepreneur’s external social network (friends and

family), and the internal social network (Buttice et al., 2017) developed inside the platform.

The dichotomy proposed here—buyers with zero, and positive (which is allowed to exhibit higher

heterogeneity), hassle costs—directly relates to buyers’ different pledging behaviors in crowdfunding

and turns out to be the key in generating the two probability spikes observed in reality.

In the baseline model, buyers’ arrivals are highly stylized. T buyers sequentially visit the

campaign and make their pledging decisions, among which there are Td dedicated buyers and

(T − Td) common buyers. So T is the total demand. A crucial assumption underlying our model

(also tacit in most of other theoretic models) is that T and Td must be independent of buyers’

pledging decisions.11 Buyers’ arriving order Õ is a random variable with a typical element o ∈ O ⊂

{CB,DB}T where O contains CTd
T elements (cases).12 Each case o ∈ O is assumed to happen with

the same probability. For tractability, we also assume buyers arrive at the campaign in equal time

intervals, that is, the tth buyer arrives when t
T time has elapsed. This simplified arrival process can

9It will become clear that the key momentum driver is the buyers with zero hassle cost (see Subsection 3.2), while
the main results are robust to higher degrees of heterogeneity for positive hassle costs (see Sup Section S1.4).

10In fact, crowdfunding entrepreneurs are frequently found to engage in supporting peers’ projects as a way to
reciprocally accumulate social capital (Buttice et al., 2017).

11Our model cannot address issues caused by the possibility that better funding progress improves the campaign’s
public exposure, by the platform’s algorithm or by social media reference, thus bringing in more interested buyers.

12C
Td
T denotes the combinatorial number regarding Td-combinations of a set containing T elements. We define

C0
T ≡ 1. CB and DB are short for common and dedicated buyers. o is one realization of their arriving order. An

example of o is (DB, ...,DB,CB, ...CB) where the initial Td arrivals are DBs and the last (T − Td) arrivals are CBs.
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be viewed as a mean approximation of a Poisson process where buyers’ arrival rate is fixed.13

The utilities conditional on pledging for dedicated and common buyers are, respectively,

ud = (1− p)ϕ and uc = (1− p)ϕ− hp, (1)

where ϕ ∈ [0, 1] is the buyer’s anticipation of the campaign’s success probability. With full-refund

policy, the only loss is buyers’ hassle costs when campaign fails. As the hassle cost is irrecoverable,

buyers only pledge when ϕ is sufficiently high. This pledging failure risk is the key risk associated

with crowdfunding’s All-or-Nothing policy. Several theory models (e.g., Chakraborty et al., 2021;

Deb et al., 2019) have modeled buyers’ anticipation of the campaign’s success probability, but by

equipping buyers with sophisticated market knowledge or publicly unavailable information (e.g.,

the donor’s behavior, the demand’s distribution). In contrast, we address the pledging failure

risk through a behavioral channel wherein buyers use a meaningful rule of thumb to form such

anticipations and base their decisions on publicly available information. An elaboration of the

behavioral rule follows shortly. Also, we assume the total hassle cost hp is linear in price, as higher

price usually induces greater monitoring efforts or incurs higher opportunity costs.

Normalize the outside option to be of zero utility. Then, dedicated buyers pledge when (1−p)ϕ ≥

0, or p ≤ 1. Common buyers pledge when (1− p)ϕ− hp ≥ 0, or

ϕ ≥ hp

1− p
. (2)

To this end, it is worth asking whether the model’s setup is applicable to equity or debt crowd-

funding. First, notice that buyers have a known valuation for the reward (product), v = 1, which

is not the case in equity crowdfunding, where backers get a claim to the business thus the value of

pledge depends on the uncertain profitability of the business in question. Debt crowdfunding does

provide a certain payoff if there is a pre-specified interest rate and no default risk. The difference

is that lenders can choose any investment amount at their will (usually above a threshold), which

is another variable yet to be modeled, and the number of potential lenders alone cannot pin down

the potential funds available. But in the reward-based crowdfunding modeled by this paper, each

backer is assumed to want just one unit of the product and make one decision of buy or leave.

Therefore, the model at hand fits the context of reward-based crowdfunding best.

13Its robustness to stochastic arrival is checked in the Sup Section S1.3.
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3.1.3 The behavioral rule

In this section, we elaborate on the behavioral rule by which buyers form their anticipations of

the campaign’s success probability ϕ. On this issue, the conventional theory tactics usually involve

imposing (different levels of) sophistication on buyers, while the bimodal puzzle shown in Figure

1 seems to keep eluding such analysis. Therefore, our behavioral model may be seen to fill this

gap exactly. But it does not mean that this behavioral rule stand opposite of sophistication (or

rationality); rather, we argue that buyers have bounded rationality, less than fully due to the costly,

if not completely inaccessible, observation and manipulation of information (Radner, 1996).

Figure 2: A typical campaign reports its progress on the top of its website.

We start with the publicly available information that can be used by buyers to form their

anticipations. Figure 2 displays part of a typical campaign’s website: the monetary percentage

funded (fund/goal) illustrated by the green-filled bar, then current number of backers (denoted by

n), remaining time, inception date and more information on the lower page. We assume buyers

rely on two key observable elements to form their ϕ: the percentage funded (fund/goal) and the

fraction elapsed time (time elapsed/total duration). Li et al. (2020) empirically proved that backers’

perceived success probability increases in the former, identified as positive network externalities,

and decrease in the latter, identified as negative time effects.14

In our setting, when the tth buyer arrives, t ∈ {1, 2, .., T}, the fraction elapsed time is t
T

since buyers arrive in equal time intervals. For single-pricing without donation consideration, the

percentage funded is n
G , where n is the number of pledged backers, n ∈ {0, 1, ..., t−1}, and G is the

number of backers required for success (the backers’ goal). That is, we assume buyers’ ϕ increases

in n
G and decreases in t

T . For tractability, we further assume ϕ is linear in the campaign’s funding

14Li et al. (2020) incorporated a third factor of the campaign’s social media exposure, which falls outside our scope.
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progress, which is defined to be n/G
t/T . Note that we have restricted that no buyer arrives exactly at

the inception of the campaign (t ̸= 0) for n/G
t/T to be well defined.

Definition 1. The campaign’s funding progress is defined to be the ratio of the percentage funded

and the fraction elapsed time. That is, funding progress = n/G
t/T .

Assumption 1. The anticipated success probability is a linear function of the funding progress:

ϕ(t, n, T,G) =

 ρn/G
t/T , if n+ 1 < G

1 , if n+ 1 ≥ G
, where ρ ∈

(
0,

G

T

]
. (3)

Here are some clarifications for the functional form of ϕ. First note that n < t, since there are

at most (t− 1) pledges when the tth buyer arrives. When n
t → 1, n/G

t/T → T
G , so for ϕ ≤ 1, the slope

ρ, representing how optimistic the buyer is, must satisfy ρ ≤ G
T . This is a natural requirement for

the buyers to perceive a probability lying in (0, 1). To simplify notation, let ρ = G
rT where r ≥ 1,

then ρn/G
t/T = n

rt . Also, if the buyer can complete the campaign by herself, or n + 1 ≥ G, then

ϕ = 1. The funding progress reflects how well the campaign has progressed by the buyer’s arrival.

For instance, in Figure 2, the campaign has received 315 USD out of a goal of 2,000 USD, whereas

3 out of 30 days (the duration information is displayed on the lower page) have passed. Therefore,

t
T = 3

30 and n
G = 315

2000 , and the funding progress = 15.75%
10% = 1.575. Funding is currently ahead of

time in the sense that if funds continue to grow at the same speed, the campaign will get 157.5%

funded.15 Without sophisticated knowledge of the market, buyers are posited to use this simple,

intuitive linear function as a rule of thumb16 to estimate the campaign’s success probability.

No doubt, without sophisticated understanding of the stochastic fundraising process, buyers can

hardly achieve perfect rationality, which, indeed, is absent in many real world situations due to the

unavailability of information (as it is here), the tendency to follow routinized behavior (Rosenthal,

1993), the costly gathering and manipulation of information (Radner, 1996), etc. Rather than

perfect, this behavioral rule may be seen to reflect bounded rationality of crowdfunding buyers.17

Lastly, we claim that the choice of this linear form is mainly motivated by tractability. What

lie at the core of the behavior rule, as suggested by Li et al. (2020), are the positive network

externalities and negative time effects.18 Despite its simplicity, this rule will be shown to accord

very well with the stylized facts in crowdfunding.

15But buyers do not assume that the speed would continue, otherwise it should be ϕ = 1 if n/G
t/T

≥ 1.
16Rosenthal (1993) gave examples in varying contexts where people seem to follow certain rules of thumb instead

of doing case-by-case optimizations to make their decisions.
17We show in Sup S2.4 that such a linear form will emerge if buyers make a simple yet rational update about the

campaign’s fundraising speed.
18The simulation result in Li et al. (2020) also seems to suggest the plausibility of such a linear relation in some

contexts (cf. Footnote 20).
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3.2 The buyer’s decision

As discussed above, a dedicated buyer makes her decision independently of ϕ due to her zero hassle

cost, pledging as long as p < 1. Note that p < 1 is always required since v is normalized to 1 for all

buyers.19 Henceforth, we assume p < 1, thus dedicated buyers always pledge upon arrival. Since

p = K+cG
G , it follows that a natural restriction for G is G > K

1−c .

With a positive hassle cost h > 0, common buyers only pledge when the campaign’s current

progress seems promising. Combining (2) and (3), we know that the tth buyer, if she turns out to

be a common buyer, pledges if and only if n+ 1 ≥ G (succeeding immediately), or

ρ
n/G

t/T
≥ hp

1− p
, (4)

where all variables are perfectly observable to the buyer as she knows her own ρ and h. Replacing

ρn/G
t/T by n

rt and p by p = K+cG
G , (4) is equivalent to

n

t
≥ rhp

1− p
=

rh

( G
K+cG − 1)

≡ k ≡ k(G), (5)

So common buyers pledge (if the campaign does not succeed immediately) if n
t ≥ k, in other words,

if sufficient backers (n) have revealed themselves before this buyer’s arrival (t).

Definition 2. Let k ≡ k(G) ≡ rh
( G
K+cG

−1)
be the critical mass that determines whether or not the

current progress can convince a common buyer to pledge.20

Define the right hand side of (5) as the common buyers’ critical mass k. k > 0 since p < 1.

Recall that n
t < 1, so if the entrepreneur wants to capture any common buyer, the critical mass k

must be set (via the choice of G) below 1. We thus restrict attention to k ∈ (0, 1).

Lemma 1. For any common buyer to pledge, the critical mass k must be set below 1.

Buyers make their decisions according to (4), while the equivalent criterion (5) is the key to

our analysis. An immediate application is: 0
1 < k ∈ (0, 1). If the first arrival is a common buyer,

19In fact, p = 1 is also feasible, in which case common buyers would never pledge because the right hand side of
(4) becomes infinity. We thus ignore this case in our context.

20Our definition of the critical mass is closely related to, but different from the time-varying critical threshold
defined in Li et al. (2020). To see the connection, rewrite (4) as n

G
≥ t

T
hp

ρ(1−p)
, the right hand side is analogous to

the time-varying critical threshold defined in Li et al. (2020), which depends linearly on the fraction elapsed time t
T

in our model. The linear relation is consistent with the empirical simulation for average-valuation projects in Figure
7(a) of Li et al. (2020), except for an intercept that is missing here. The intercept and curvature of the time-varying
threshold in their setting seem to vary with different product valuations, which is beyond the scope of our model as
we focus on one typical campaign and normalize its product valuation to 1.
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overwhelmed by uncertainty, the buyer would not pledge (nor can she perform more strategically be-

cause she does not know she is the first). In fact, no initial common buyer will pledge until sufficient

dedicated buyers have revealed themselves since 0
t < k for all t. This highly abstracted, baseline

model thus predicts that the early-stage capital comes solely from dedicated buyers. Adding ran-

dom arrival or other realistic perturbation allows early funds to come from common buyers as well,

but only in small fractions. Somewhat agreeing, Agrawal et al. (2011) found that friends and family

as an important source of dedicated buyers are disproportionately active in the beginning, while

other buyers gradually increase their investing propensity as the capital accumulates.

Once sufficient dedicated buyers have arrived and pledged, the first common buyer observing

n
t ≥ k (the critical mass being reached) will be convinced to pledge. So does the next buyer and

buyers thereafter, since n+1
t+1 > n

t ≥ k. Thus, a pledging cascade, or herding,21 happens after n
t first

crosses the threshold k. This is summarized in Lemma 2.

Definition 3. The pledging cascade, or herding, refers to the situation that once the first

common buyer decides to pledge, all subsequent buyers will pledge regardless of their types.

Lemma 2. Only dedicated buyers would pledge before the campaign reaches the critical mass k,

after which a pledging cascade (herding) starts.

Given some k < 1, the campaign’s outcome hinges on how fast it collects funds from dedicated

buyers to reach the critical mass. In the baseline setting, all common buyers arriving before reaching

the critical mass will be lost by the campaign, while those arriving afterwards can be captured.

If the critical mass is never reached, the funds only accrue at the occasional arrivals of dedicated

buyers, leading to a potential failure if dedicated buyers alone cannot cover the target amount.

Thus the model predicts a pattern of steady growth in funds after a campaign reaches its critical

mass, though undoubtedly, the real funding dynamics are affected by other relevant factors and

exhibit higher complexity, particularly exhibiting two funding spikes (U-shape) at the beginning

and the end of the campaign (e.g., Figure 3 in Li et al., 2020). We address these factors and the

formation of the U-shape funding dynamics in the Sup Section S1.3.

Folding back to the model, if the campaign has Td dedicated buyers out of T buyers, its outcome

is fully pinned down by the critical mass k and the buyers’ arriving order (recall it is the random

variable Õ with a typical element o). Let the random variable Ñ denote the number of captured

buyers, with a typical element N ∈ {Td, Td + 1, ..., T}: A campaign receives at least Td pledges

from the dedicated buyers (since p < 1) and at most T pledges. For the convenience of analysis,

21Pledging cascade and herding are used interchangeably in this paper. Though they refer to the same phenomenon,
the former stresses its relation to the bounded rational pledging rule proposed in the paper, while the latter stresses
the behavioral aspect of the phenomenon.
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alternatively let random variable L̃ = T − Ñ denote the number of lost buyers, with a typical

element l ∈ {0, 1, ..., T − Td}: A campaign loses at most all the common buyers. There are in total

CTd
T arriving orders, each happening with the same probability and corresponding to a unique lost

buyer number l. For instance, if o = (CB, ..., CB,DB, ...DB) where all common buyers arrive in

the front, then the campaign loses all of them and L̃ = T − Td regardless of k.

The entrepreneur affects k = rh
( G
K+cG

−1)
via setting the backers’ goal G, where the former is

clearly a decreasing function of the latter, thus sometimes denoted by k(G). While a lower G

is easier to achieve, it raises k and makes it harder to capture common buyers. Eventually, the

campaign succeeds if T −L̃ ≥ G and fails otherwise. Given some k, the derivation of L̃’s probability

mass function (p.m.f) is purely technical and can be achieved using numerical methods,22 while

due to the structural nature of (5), namely n and t are both integers, an analytical expression is

only attainable for two regular forms of k, k ∈ K = { 1
x ,

y−1
y : x, y ∈ {2, 3, 4, ...}}. In the following,

we first present the closed-form result for such k, discuss its implications, and then formalize the

impact of k on L̃ with a Proposition about the first-order stochastic dominance relationship among

arbitrary k ∈ (0, 1), which also indicates that these special-form k’s serve as good approximations

for arbitrary k ∈ (0, 1) in estimating L̃’s distribution.

3.2.1 Campaign’s outcome with two regular forms of k

Given T , Td and k(G), the key to characterize the lost buyers L̃’s p.m.f is to figure out a way

to place two types of buyers properly such that the pledging cascade starts right at the (l + 1)th

common buyer, thus the campaign loses exactly l buyers. For example, if k = 1
2 , the campaign does

not lose any buyer (i.e., l = 0) if and only if the first arrival is a dedicated buyer, so the second

buyer facing n
t = 1

2 ≥ k always pledges following which the cascade starts. The complexity of the

problem grows quickly in l, and the methodology is fully presented in Sup Section S2.

Also note that the interesting scenario is Td < G: Since the campaign always captures all

dedicated buyers, this means the campaign’s success probability is less than 1.23 Because the lowest

feasible G the entrepreneur can choose is K
1−c where p reaches its upper bound 1, so throughout the

paper we only consider the scenario Td < K
1−c , that is, there is no way the entrepreneur can assure

100% success, and she has to capture common buyers to reach the goal.

Assumption 2. Td < K
1−c , thus the entrepreneur has to capture common buyers to reach the goal.

22Explanations for the theoretic/numerical methods to calculate L̃’s p.m.f for k ∈ (0, 1) are included in the Sup.
23When Td ≥ G, the campaign succeeds for sure. L̃’s p.m.f may be of value in its informativeness of how many

buyers the succeeding campaign is able to capture. Such discussion falls outside the scope of the paper. Nevertheless,
we provide L̃’s p.m.f for the case Td ≥ G in the Sup (S2.1, S2.2, and Figure S6) for completeness.

14



For notation convenience, when k = 1
x , divide l by (x − 1), and let (n − 1), (m − 1) denote

the quotient and remainder.24 The next Propositions fully characterize the lost buyers’ p.m.f for

k = 1
2 ,

1
3 , ... or k = 2

3 ,
3
4 , ...

Proposition 1. Suppose k = 1
x for some x ∈ {2, 3, 4, ...}. Then,

(1) For all 0 ≤ l ≤ min(Td(x− 1)− 1, T − Td − 1), Prob(L̃ = l) =
mCn−1

x(n−1)+(m−1)
C

Td−n

T−(x(n−1)+m)

((x−1)(n−1)+m)C
Td
T

.

(2) For all Td(x− 1)− 1 < l ≤ T − Td − 1 (if well defined), Prob(L̃ = l) = 0.

(3) Prob(L̃ = T − Td) = 1−
∑T−Td−1

l=0 Prob(L̃ = l).

Proposition 2. Suppose k = y−1
y for some y ∈ {2, 3, 4, ...}, and assume y − 1 ≤ Td.

25 Then,

(1) For all 0 ≤ l ≤ min( Td
y−1 − 1, T − Td − 1),Prob(L̃ = l) =

Cl
(l+1)y−2

C
Td−(l+1)(y−1)

T−((l+1)y−1)

(l+1)C
Td
T

.

(2) For all T
y−1 − 1 < l ≤ T − Td − 1 (if well defined), Prob(L̃ = l) = 0.

(3) Prob(L̃ = T − Td) = 1−
∑T−Td−1

l=0 Prob(L̃ = l).

The somewhat bulky expressions reflect the technical complexity of the problem. While we

encourage readers to focus on the implications behind the mathematical expressions, several clari-

fications might be valuable to help digesting the math expressions.

First, the two propositions are equivalent when x = 2 or y = 2 as both represent k = 1
2 . Second,

if the critical mass k is too high, that is, x too small (or y too big) to the extent that the interval

in (2) of each proposition is well defined, then Prob(L̃ = l) = 0 for these big l’s. Intuitively, if the

critical mass k is too high relative to Td
T , falling short of dedicated buyers, the campaign cannot

reach the critical mass after having lost l common buyers, thus resulting in losing all common

buyers.26 Last, in (3) the probability of losing all CBs (critical mass never reached and cascade

never happens) is 1 minus the sum of other probabilities (cascade happens at some point).

3.2.2 Implications of the Probability Mass Function

Propositions 1 and 2 have three major implications: There tend to be two probability spikes in

the p.m.f.; Herding almost always (probabilistically) leads to campaign’s success; L̃’s distribution

is heavily affected by Td
T while almost invariant to the scale to Td and T .

A. Two probability spikes

24For example, if l = 5 and x = 4, then n = 2 and m = 3.
25If y − 1 > Td, Prob(L̃ = T − Td) = 1.
26For example, if the campaign has 11 buyers, 8 CBs and 3 DBs, k = 1

3
, then it is not possible to lose exactly

6 buyers. To lose 6 buyers, 6 CBs need to be placed in the front, accompanied by n DBs in a certain way, for the
(6 + n + 1)th buyer to observe n

7+n
≥ 1

3
and start the cascade. The smallest such n is 4 but there are only 3 DBs.

L̃ = 7 is also not possible for the same reason. But it is possible to lose all CBs, simply by not letting the cascade
start (e.g., placing 8 CBs in the front).
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Figure 3: L̃’s p.m.f for varying critical masses

Note: This figure displays L̃’s p.m.f for k = 1
4
, 1
3
and 2

3
. All omitted probabilities are less than 0.01. Because the

p.m.f decreases quickly to a negligible level as l increases, there tend to be two spikes around L̃ = 0 and T − Td.
Also, as the critical mass k increases, L̃’s p.m.f becomes worse in the sense that the campaign tends to lose more
buyers. Consequently, when k is small (e.g., k = 1

4
), the mass at L̃ = T − Td may not exist—campaigns with a very

low critical mass are likely to capture almost all buyers.

As shown in Figure 3, there tend to be two probability spikes in L̃’s p.m.f: The campaign

either captures almost all buyers (L̃ ≈ 0, referred to as the all-captured spike) or captures only the

dedicated buyers (L̃ = T − Td, referred to as the dedicated-only spike). Mathematically proved in

the Sup, L̃’s p.m.f will quickly (may not monotonically) decrease to a negligible level as l increases,

giving rise to the all-captured spike, while such rapid decrease naturally leads to the dedicated-

only spike according to (3) of each proposition. The two spikes correspond to two high-probability

events: the cascade starts very early (so L̃ is low) or never starts (i.e., L̃ = T −Td). If the campaign

quickly reaches the critical mass in the beginning, it will capture all subsequent buyers no matter

how they arrive in order (which results in high probability). Otherwise, if the campaign fails to

attain the critical mass for a long period of time, that is when many common buyers have arrived

too early to see an encouraging progress (which also happens with high probability if the critical

mass is hard to achieve), the momentum ebbs, dedicated buyers hardly able to compensate for the

negative time effects, and the campaign will lose all subsequent common buyers.

This pattern is reminiscent of the crowdfunding’s two-spike feature in Figure 1—most campaigns

either fail with little funds collected or succeed by a small margin—but three steps away. First, Td

must to be very low that the failing campaign collects barely nothing. Due to the exogenuity of Td
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in the model, the barely-funded spike found in data may reflect the fact that most failing campaigns

lack in dedicated buyers, which conversely, is responsible for the campaign’s failure in the first place

(more on this point in Implication (C)). Discussions about the importance in harnessing dedicated

buyers will be picked up in Section 5. Apart from the lack of dedicated buyers, another crowdfunding

mechanism also facilitates the formation of the barely-funded spike: Backers are allowed to cancel

their pledge while the project is still live (e.g., on Kickstarter). Therefore, pledged dedicated buyers

may retrieve their pledge when it becomes apparent that the campaign will fail, not waiting for

refund until the advent of actual failure. The lack of dedicated buyers and the cancel policy may

be said to work in tandem in forming the barely-funded spike observed in data.

Second, the entrepreneur must set the backers’ goal G slightly below the total number of backers

T for successful campaigns to exceed the target only by small margins. Interestingly, the two-spike

feature itself makes it optimal for the entrepreneur to do so. As will be elaborated in Subsection

3.3, since the p.m.f decreases rapidly in l, the pro of lowering G (easilier achievable goal) is soon

dominated by the con (harder reachable critical mass k), thus the optimal G∗ is always set below the

all-captured spike before the probability diminishes to a negligible level. This logic applies as long

as L̃’s p.m.f decreases rapidly around the all-captured spike, which renders any further lowering

of G unprofitable. So the result should be robustness to demand uncertainty (see Sup S1.1) or

random arrival (see Sup S1.3), each adding some variance to the baseline model along either the

demand, or the time dimension, naturally resulting in higher variance around the two spikes, but

retaining the rapidly diminishing trend of L̃, though how fast it diminishes (or how close G∗ is to

T ) depends on the variance of the underlying uncertainty for the demand or the time.

Lastly, the sawtooth pattern in Figure 3 is different from that in Figure 1, in that the former

predicts the highest probability to show up at Ñ = T (capturing all buyers) but the later shows

it actually happens at Ñ = G (capturing exactly the backers’ goal). Keeping only a parsimonious

amount of basic yet key ingredients, the simple setup at hand can only deliver an explanation for

the two statistical spikes in the campaign’s funding outcomes, but for not their sawtooth pattern.

An attempt to address the issue inevitably involves modeling the backers’ incentives and strategies

in a more complex way. We provide a possible explanation for the sawtooth pattern in Sup S1.1

by considering the interplay of donors (Deb et al., 2019) and strategic-waiting buyers.

B. Rational and efficient herding

Herding is a common phenomenon in traditional financial markets, recently also documented

for different crowdfunding markets: reward-based (Xiao et al., 2021), equity (Astebro et al., 2019),

microloan (Zhang and Liu, 2012), prefunding (Wei et al., 2021). While the rationality of crowd-
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funding herding is overall approved, in that backers do not passively mimic others’ choices but

engage in observational learning during the process (Zhang and Liu, 2012), such learning is mostly

postulated to mitigate buyers’ uncertainty for campaign’s quality. Thus one novel aspect of this

paper is that, absent any quality-related risk, our model implies that herding can also emerge from

the relief of buyers’ pledging failure risk once the critical mass is reached. Differing from past em-

pirical works, this model addresses crowdfunding herding from a theoretic angle and by a different

risk measure, and below we reason that such herding is both rational in terms of why it arises, and

(with high probability to be) efficient in terms of where it leads to.

Lemma 2 formalized herding to be a natural pledging cascade resulting from the pledging rule

(5), a behavioral rule-of-thumb that reflects bounded rationality. So the underlying assumption is

that buyers do not passively mimic existing backers, but actively examine, with the information at

hand, whether the success odds are high enough to cover the hassle costs. Such herding, originating

from the bounded-rational behavioral rule, may be said to be (boundedly) rational as well.

Herding would be ex post efficient if it de facto resolves buyers’ pledging failure risk, i.e., if

herding does lead to success for the campaign. Recall that the two spikes represent two high-

probability events: herding happens very early (leading to outcomes near the all-captured spike)

or herding never happens (leading to the dedicated-only spike). And success relies on capturing

more than G∗ buyers, while we will proceed to show G∗ is set close to T , the all-captured spike.

It means that the absence of herding foretells the campaign’s failure, while herding almost always

leads to success. Is it possible that herding may sometimes lead to failure? The answer is yes,

because it is still possible that herding happens rather late when the campaign has lost quite a few

common buyers (the intermediate values of l), but intermediate l is low-probability event as seen

in Figure 3. In these cases, herding is still rational, because the mismatch of herding and failure

is due to buyers’ inability to ascertain the success. That is, buyers’ perceived success probability is

high enough to cover hassle costs (so they herd), though the outcome turns out to be a failure.27

To summarize, herding originates from the specified behavioral rule. High, timely funded per-

centage is an indicator of high network externality, thus high success probability, in which case

buyers are less likely to engage in rewardless pledging at a cost. That is, the funding progress is

informative of the campaign’s outcome, hence the buyers who utilize these information to relieve

their risks, and the herding phenomenon emerging during the process, can be deemed as (bound-

edly) rational. The herding is also ex post efficient in that it almost always leads to the campaign’s

success, which may be seen as a full resolution of buyers’ pledging risk.

27Recall that ϕ is always less than 1 unless n + 1 ≥ G, i.e., the campaign is already successful or the buyer can
complete the campaign by herself. That is the only way buyers can ascertain success.
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Figure 4: L̃’s p.m.f for different Td
T ratios

Note: This figure displays L̃’s p.m.f for Td = 30, 90, 150, given T = 300 and k = 1
2
. Higher proportion of dedicated

buyers improves L̃’s distribution, in that the campaign tends to lose less buyers.

C. The demand, T , Td, and the dedicated-to-all ratio Td
T

The conventional economics tactic to model the market’s demand system is to fully characterize

it by a demand curve, where buyers’ type (heterogeneity) is distinguished by their value, or will-

ingness to pay. Upon a further inspection of the behavioral rule described in Subsection 3.1 and

encapsulated in (5), one might notice that this model distinguishes buyers by their hassle costs,

or more specifically, their perceived critical mass k = rh
( G
K+cG

−1)
, which completely determines the

buyers’ pledging decision and behaviors.28 The Propositions imply that fixing k, the campaign’s

outcome (its Ñ ’s distribution) relies on three dimensions of the demand: how many buyers in total

(T ), how many dedicated buyers (Td), and the dedicated-to-all ratio (Td
T ).

By the expressions given in Propositions 1 and 2, L̃’s distribution is almost invariant to the

scale of T and Td, but heavily affected by the dedicated-to-all ratio.29 A quick example is, when

k = 1
x , Prob(L̃ = 0) = CTd−1

T−1 /CTd
T = Td

T , while a graph illustration is provided in Sup Figure

S4. The portion of dedicated buyers determines how fast the critical mass can be reached, thus

directly affecting the lost buyers’ distribution. Since the campaign’s outcome is fully characterized

28Common buyers have positive k while dedicated buyers have k = 0. So if robustness can be proved for higher
heterogeneity in k (argued in Sup S1.4), the model actually represents a large relaxation of traditional demand system
regarding where the buyer-side heterogeneity may come from, not only from v, but also from r and h.

29Changing the scale of T and Td would stretch the support of L̃. What stays invariant is L̃’s p.m.f at the polar
(around the two spikes), while the middle stretch (of different lengths) share very low probabilities.
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by Ñ = T − L̃ where Ñ ∈ [Td, T ], T and Td have different impacts on Ñ as follows.

T has three impacts on Ñ . First and foremost, k = rh
( G
K+cG

−1)
where the maximal feasible G is

T (the backers’ goal less than total number of backers), so higher T raises the highest G or lowers

the lowest k. Intuitively, higher total demand means buyers will arrive with higher frequency, so

the tth buyer will arrive when a smaller fraction of time has elapsed, bringing her perceived ϕ up,

and her k down. A lower k improves L̃’s distribution (Figure 3) by tilting the probability bars

to the all-captured spike, thus tilting Ñ ’s distribution to the T -polar. The second impact of T

is to increase the upper bound of Ñ , allowing for more capturable buyers. So far, both impacts

are positive. Third, higher T results in a lower dedicated-to-all ratio, which negatively impacts

L̃’s (Ñ ’s) distribution by tilting the probability bars to the dedicated-only spike (the Td-polar), as

shown in Figure 4. Similarly, (higher) Td has a twofold impact on Ñ : it raises both the Ñ ’s lower

bound and the Td
T ratio, thus improving L̃’s (Ñ ’s) distribution by tilting the probability bars to the

all-captured spike (the T -polar). Conversely, as illustrated by the yellow bars in Figure 4, low Td

results in high probability of capturing only the dedicated buyers, thus high probability of failure.

In summary, a higher portion of dedicated buyers is always beneficial, in securing a larger

number of pledges at the minimum and helping the campaign quickly accumulating funds and

reaching the critical mass. Having more common buyers (fixing Td while increasing T ), on the

other hand, benefits the campaign by increasing the capturable buyers at the maximum and by

lowering the critical mass for common buyers, but may harm the distribution as it becomes more

difficult to reach the critical mass with a lower portion of dedicated buyers. A direct take-away is

that without a solid foundation of dedicated buyers, the attempts to bring in more common buyers

might be of no avail if the critical mass is yet to be reached. The overall impact of having more

common buyers does not have a clear-cut answer, and needs case-by-case examination.

3.2.3 General k and first-order stochastic dominance

While Propositions 1 and 2 deliver the three implications neatly, it is naturally to ask whether these

desired properties, especially the two-spike feature that serves as a corner-stone for all subsequent

analysis, would survive for arbitrary k ∈ (0, 1). Also, the foregoing analysis calls for a formalization

of the impact of k on L̃’s distribution, i.e., what it means by saying lower k tilts L̃’s distribution

to the all-captured spike. This section settles the two issues in one by establishing a first-order

stochastic dominance (FOSD) relationship regarding L̃’s distribution for different k ∈ (0, 1).

Consider two identical campaigns except for their backers’ goal, resulting in kA ≤ kB, kA, kB ∈

(0, 1). Recall that cascade happens when n
t ≥ k. If cascade has started for Campaign B, it should

have started for Campaign A since n
t ≥ kB ≥ kA. In other words, the cascade always starts (weakly)
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earlier for Campaign A, meaning for any random arriving order, Campaign A should lose (weakly)

less buyers than Campaign B. This logic gives rise to the FOSD relationship in the next Lemma.

Lemma 3. Assume Campaigns A and B have the same number of common and dedicated buyers.

If their critical masses are such that kA ≤ kB, then L̃B weakly FOSD L̃A, that is, Prob(L̃B ≤ l) ≤

Prob(L̃A ≤ l) for all l ∈ {0, 1, ..., T − Td}.

The FOSD relationship immediately implies that L̃’s cumulative mass function (c.m.f) of any

k lies between the c.m.f’s of its two nearest regular-form k’s. If a function is bounded above and

below by two functions exhibiting the two-spike feature (in its corresponding p.m.f), the function

should exhibit the feature as well. In fact, if two k’s are very close to each other, their L̃’s p.m.f’s

may share the same value for many low l’s (e.g., k = 1
4 ,

1
3 in Figure 3) due to the integer constrains

on n and t. Moreover, as L̃’s p.m.f decreases quickly to a negligible level, sharing the same values at

low l’s indicates their p.m.f’s are almost the same. Figure S7 in Sup provides a graph illustration.

3.3 The entrepreneur’s decision

In Section 3.2, we analyzed buyers’ behavior and derived L̃’s p.m.f given T , Td and k (k is set by the

entrepreneur via k(G)). Now, we are interested in the decision of backers’ goal G by a sophisticated,

success-probability maximizing entrepreneur. The setup of a sophisticated seller optimizing against

boundedly rational buyers follows the literature of behavioral industrial organization wherein firms

are treated as fully rational agents who sometimes exploit the myopia or naivete of buyers (see e.g.,

Gabaix and Laibson, 2006). The goal of this section is to show that the entrepreneur would set the

optimal backers’ goal G∗ close to T due to L̃’s two-spike feature.

First, the entrepreneur needs to have some extent of market knowledge in order to maximize

success probability. In the baseline, we assume somewhat strongly that the entrepreneur knows the

exact market demand T and Td, and show the optimal G∗ is close to T . In Sup S1.1, a more general

setting is considered where the entrepreneur knows only the distributions of T and Td, rather than

precise point estimations. Though, how demand uncertainty impacts L̃’s p.m.f essentially, is to

take a weighted sum of L̃’s p.m.f for each point estimation and end up with higher variance around

(instead of obliterating) the all-captured and dedicated-only spikes. And if L̃’s p.m.f under demand

uncertainty retains the two-spike feature (it does), the main message of this section should carry

over. In addition, the entrepreneur needs to know other key parameters in the maximization: here,

it is buyers’ product valuation v, common buyers’ hassle cost h, and the anticipation parameter ρ

(or r) which reflects how optimistic the buyer feels about the campaign’s progress.

It may appear unreasonable to ask the entrepreneur to know so much about the market; it is,

indeed. But recall that only three factors matter in determining L̃’s distribution, T , Td, and k, or
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put in another way, how many each type of buyers there are, plus what each type’s critical mass

is—This is actually a simpler, reduced version of any demand curve which has infinitely many types

of buyers distinguished by their willingness-to-pay. Essentially, the entrepreneur needs to estimate

how k is affected by her goal-setting G, and this is where v, h, r weigh in. Moreover, it will become

clear that the main result (G∗ close to T ) only requires the entrepreneur to accurately estimate T

(or T ’s distribution, as discussed in Sup S1.1). Failing to do so for all other parameters will result

in a suboptimal decision, but not affect the main result.

Now let F (· | k) denote L̃’s cumulative function given some k, i.e., F (L | k) =
∑L

l=0 Prob(L̃ =

l | k). The entrepreneur needs to solve

max
G∈[ K

1−c
,T ]

F (T −G | k) s.t. k = k(G) =
rh

( G
K+cG − 1)

.30 (6)

The optimal G∗ maximizes the probability that the campaign reaches the backers’ goal (i.e. L̃ ≤

T −G), while F (· | k)’s distribution is jointly determined by T , Td and k. The feasible set of G is[
K
1−c , T

]
, for p = K+cG

G ≤ 1 and for the backers’ goal not exceeding the total number of buyers.

A trade-off associated with the choice of G makes the maximization problem meaningful. Since

k(G) decreases in G, a higher goal gives rise to an easilier reachable critical mass, and as k(G)

decreases, L̃ is stochastically lower (c.f., Lemma 3) thus F (· | k(G)) shifts up. However, higher

backers’ goal is harder to achieve, reflected in F (T −G | k(G)) deceasing in the first G.

The first economic implication is that, by Assumption 2 and Lemma 1, k < 1 is a necessary

condition for the campaign to be possible to succeed since the entrepreneur cannot solely rely on

dedicated buyers’ funds. The lowest k is k(T ), and k(T ) < 1 requires T > K
1

rh+1
−c

.

Proposition 3. If T < K
1

rh+1
−c

, the campaign’s success probability is 0.

Notice that K
1

rh+1
−c

> K
1−c . It yields a strong implication that, even if the total demand (T ∗v =

T ) is sufficient to cover the production cost (K + c ∗ T ), i.e., T ≥ K
1−c , the campaign still fails for

certain if T < K
1

rh+1
−c

. This stands in contrast to models which tacitly assume perfect coordination

among buyers, where the campaign is deemed successful as long as total demand meets the goal

(e.g., Chakraborty and Swinney, 2021; Strausz, 2017) and buyers’ hassle costs are absent. In

other words, higher demand (than what is needed to cover production costs) is necessary for the

campaign’s success as a way to compensate for buyer’s pledging failure risk.

An analytical solution for (6) requires F (L | k)’s expression. Sup Figure S8 shows that F (L | k)

is not everywhere continuous in k (whereas L, taking integer values, is naturally discrete) and does

30Though G is allowed to take non-integer values, it is proved in Sup S2.6 that G∗ must be an integer. It follows
that there exists a solution to the problem.
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not have a closed-form expression. Therefore, our main goal is not to give the analytical solution

but to characterize it as much as possible. To get some intuition, first ignore the discontinuity in

F (L | k) and take the first-order condition (FOC) of (6):

−f(T −G | k(G)) + (−dF

dk
)(− dk

dG
) = 0, (7)

where f(· | k(G)), formerly denoted as Prob(L̃ = · | k(G)) for the discrete version, is the density

function corresponding to F (· | k(G)), with its two-spike feature illustrated in Subsection 3.2.31

We know k decreases in G, specifically, − dk
dG = rhK

((1−c)G−K)2
> 0.

To characterize dF
dk , we use simulation32 to get F (L | k)’s expression for Td

T = 0.1, 0.2, ..., 0.9

and k = 0.10, 0.11, ..., 0.90, and summarize F (L | k)’s properties regarding k with assistance of its

graphs (see Figure S8 in Sup) in the following Lemma.

Lemma 4. By simulation, F (L | k) as a function of k exhibits the following properties:

(1) F (L | k) is close to 1 (0) for sufficiently large (small) Td
T or sufficiently small (large) k.

(2) F (L | k) decreases monotonically in k, may flattening when F (L | k) is close to 1 or 0, but

decreasing steadily in between, with occasional downward jumping.

(3) When F (L | k) decreases steadily in k, the decreasing rate is slower for smaller L.

The first property is straightforward. F (L | k) decreasing in k reflects Lemma 3 (FOSD), while

the flattening when F (L | k) is close to 1 or 0 is due to the behavioral algorithm, that for sufficiently

small or large k’s F (L | k) does not change much. The last property comes from the fact that when

L is large, F (L | k) stays close to 1 for a wider range of small k’s, thus it must decrease faster to

reach 0 when k approaches 1. Given these properties of F (L | k), we claim that the maximization

is approximately a convex problem in the continuous space (and the convexity is quite obvious in

simulations, see the following Figure 5, and Figure S9 in Sup). This is because when G increases

(i) T −G is smaller and k(G) smaller, so f(T −G | k(G)) increases,33 (ii) −dF
dk decreases because

L = T −G is smaller by Lemma 4 (3), (iii) − dk
dG decreases by its expression. Therefore, the LHS of

(7) decreases in G, thus the maximization is convex. Combining the convexity of the maximization

and the fact that the optimal G∗ must be an integer, we can characterize G∗ by (7).

Proposition 4. Given the convexity of (6), start from G = T and decrease G by 1 each time, then

31By ignoring the discontinuity, we mean that for the integer L argument, one can think of F (L | k) as a continuous
approximation, and for the k argument, one can focus on the continuous parts of the function.

32Recall F (L | k) depends on T , Td and k, while fixing k, it is insensitive to the scale of T and Td but sensitive to
Td
T
. In the simulation, we take T = 500.
33Since f(L | k(G)) does not decrease monotonically in L or k but has the general tendency (see Figure 3), we call

the original problem approximately convex. This means that the problem is convex if the G grid is not too fine.
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the optimal G∗ is the first G such that F
(
T − (G∗ − 1) | k(G∗ − 1)

)
< F

(
T −G∗ | k(G∗)

)
, or

(
− f(T −G∗ + 1 | k(G∗ − 1))

)
+
(
F
(
T −G∗ | k(G∗)

)
− F

(
T −G∗ | k(G∗ − 1)

))
> 0. (8)

When G decreases, the LHS of (7) increases, thus the optimal G∗ occurs when the LHS of (7)

first becomes> 0. That is when the benefit of including f(T−G∗+1 | k(G∗−1)) is too small to offset

the general shifting down of F
(
T −G∗ | ·

)
due to higher k, i.e., k(G∗−1) > k(G∗), as illustrated by

(8). The way we characterize the solution ignores the jumps of F (L | k) in k. However, (downward)

jumps in F (L | k) should be avoided by the entrepreneur because it represents a sudden worsening

of the success probability. Mathematically, a downward jump when moving from G to G−1 means

the second bracket in (8) suddenly increases by much, and (8) may be immediately satisfied.

By the two-spike feature of f(·|k), i.e., f(L|k) soon approaches 0 when L increases, and by

Lemma 4 (2) that F (L | k) decreases steadily in k when the success probability is not too close to

1 or 0 so the second bracket in (8) is always sufficiently positive, the next corollary follows.

Corollary 5. The optimal G∗ is close to T , where L̃′s p.m.f has not decreased to a negligible level.

How close is G∗ to T? Unfortunately, this question cannot be answered analytically. Using

simulation methods, for all Td
T = 0.1, 0.2, ..., 0.9 and k = 0.10, 0.11, ..., 0.90, we find that F (L + 1 |

k)−F (L | k+0.01), which is the benefit of lowering G by 1 if the induced k increases by 0.01, often

becomes negative within L ≤ 10, L = 24 for the most. Simulation sets T = 500, but the thresholds

should remain with similar values for other T ’s since L̃’s distribution is invariant to its scale. If the

induced k increases more than 0.01, this threshold of L should be even smaller, and vice versa.

Notice that the foregoing analysis still holds if the entrepreneur wrongly estimates v, h and

r. Incorrect estimation of those parameters will distort k = rh/( G
K+cG − 1) from its real value,

which may make the entrepreneur’s choice of G suboptimal. However, reducing G (thus increasing

k) at a wrong level still gives rise to Corollary 5 since L̃’s p.m.f decreases quickly for any k. One

caveat is that, since the analysis relies on Lemma 4 (2), for those campaigns whose ex ante success

probability is either close to 1 or 0, this Corollary may not hold, meaning G∗ may not be that

close to T , giving rise to potential blockbuster successes (i.e., funds far exceeds the target, for

an example, see the first subfigure in Sup Figure S9). The comparative statics analysis, though,

cannot be performed satisfactorily because it requires precise characterization for the second-order

properties of F (L | k), i.e., d2F
dk2

, since both k and dk
dG are affected by the parameters h, r,K, c, but

the irregularity of F (L | k) function (as shown in Sup Figure S8) forbids such exploitation.

Figure 5 displays a group of L̃’s c.m.f’s. Given these parameters, the optimal G∗ falls somewhere

around 285 with a success probability around 79%. Not shown in the figure, if ρ takes a more
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Figure 5: L̃’s c.m.f for varying G, where k = rh
( G
K+cG

−1)

Note: This figure shows L̃’s c.m.f F (l | k(G)) for varying backers’ goals. The parameters are specified in the text
box. Recall ρ = G

rT
where r ≥ 1, represents how optimistic buyers feel about the campaign. Here it takes the

most optimistic value, i.e., r = 1. Comparing different curves, as G decreases, L̃’s c.m.f flattens more quickly due
to a higher k(G). The height of each dot marker represents the campaign’s success probability for each G, i.e.,
F (T − G | k(G)). Connecting these dots shows the convexity of the maximization problem. Clearly, the benefit of
reducing G (to include more l) diminishes quickly, because L̃’s distribution worsens quickly as k(G) increases. The
optimal G∗ falls somewhere around 285 with a success probability around 79%.

pessimistic value at G
2T (or r = 2), the optimal G∗ is around 295 with a success probability around

17%. Notice even if the entrepreneur estimates r differently, G∗ is still close to T .

Though comparative statics (for G∗) are not clear, how parameter change impacts the success

probability is straightforward. From (6), higher r, h, K, c would raise k, while F (T − G | k)

decreases in k for any level of G, so the (optimal) success probability decreases in these parameters.

In addition, higher c and K raise up G’s feasible lower bound, K
1−c , meaning the goal-setting (price-

setting) is limited to a narrower range. In a nutshell, more pessimistic buyers, higher hassle costs,

and higher production costs reduce the campaign’s (optimal) success probability.

To fold up, we characterize the optimal G∗ for the (discontinuous) maximization problem by

analyzing its continuous counterpart and argue that G∗ should be set close to T . The results apply

to all campaigns that is not ex ante close to a certain success/failure. The behavioral rule gives to

two polar funding outcomes (all-captured, and dedicated-only), further leads the success-probability

maximizing entrepreneur to set backer’s goal close to the total demand34 and thus pins down the

barely-funded failures and just-adequately-funded successes revealed in data. Conversely, the data

34With demand uncertainty, it is the expected value of total demand as shown in Sup S1.1.
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also vindicates the plausibility of the behavioral rule, and we proceed to discuss more implications.

4 Extensions

In this section, we extend the baseline model to answer two applied questions: (i) What is the best

timing to utilize the entrepreneur’s own social network (as expected, easily answered)? (ii) How

to design an effective early-bird offer (this one is more complex)? Due to space constraints, the

robustness check is moved to Sup S1, including an extensive discussion for demand uncertainty,

strategic waiting, random (and denser early) arrival, and higher level of buyer-side heterogeneity.

4.1 Friends and family: when to utilize social network

Personal network plays an instrumental role in the success of small startup businesses, especially

when the latter seeks funding opportunities in crowdfunding (Agrawal et al., 2014; Mollick, 2014).

More evidence indicates that, the entrepreneur’s friends and family (Agrawal et al., 2011) and her

internal social capital established within the platform (Colombo et al., 2015) contribute mainly

in the early funding stage, breeding a self-reinforcing mechanism to accelerate the campaign’s

success—The effectiveness of such early-stage support is immediately justified by our model, one

that stresses reaching a funding critical mass early for the campaign to succeed.

In the same spirit as Li et al. (2020) who empirically tested the effectiveness of early, versus late

promotions, we consider two polar cases: early-stage and last-minute support from social network.

Results show that, first, it is true that having social network’s support is better than not having;

early or late, unconditional pledges from friends and family help reaching the target. However,

early support is more effective, because it builds the momentum and helps the campaign to reach

the critical mass early on, thus allowing subsequent common buyers to be captured. Last-minute

supports only help increasing funds, but not with the preceding funding dynamics.

Proposition 6. Consider a campaign originally having T buyers, Td dedicated buyers and a back-

ers’ goal G. Now assume the entrepreneur has n0 ≥ 1 many friends and family who would pledge

unconditionally. Let Ps, P
′
s and P ′′

s denote the campaign’s ex-ante success probability without sup-

port, with early-stage support (pledging before any other buyer arrives) and last-minute support

(pledging after the last buyer has arrived), respectively. Then P ′
s > P ′′

s > Ps.
35

35Strictly, the latter inequality should be ≥. P ′′
s > Ps holds if Prob(L̃ = T −G+1) ̸= 0, which is often the case as

the optimal goal G∗ is close to T , meaning L̃ has not decreased to a negligible level at l = T −G∗ + 1.
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4.2 Price discrimination: the design of early-bird offers

Price discrimination is a common and easily implementable scheme in crowdfunding. Campaigns

are often seen to include several differently priced rewards of essentially the same product, granting

the early buyers (e.g., the initial 20 backers) with some discounts, known as the Early-Bird offer.

This scheme encourages buyers to pledge early and thus accelerates the funding progress, but on

the flip side, the entrepreneur has to raise the normal (or late-bird) price to fulfill the capital

requirement. Therefore, the lower the early-bird price is, the easier to capture early buyers; but

the higher the late-bird price must be set, and the more difficult to capture late birds.36 With that

being said, early-bird offers must be carefully designed in order to exert positive impacts.

For presentation simplicity, we restrict our attention to a dual-pricing scheme, while similar

arguments can be applied to higher levels of discriminatory prices. Consider a campaign with T

buyers, Td dedicated buyers, production cost K, marginal cost simplified to c = 0, and a backers’

goal G. Under single-pricing, the price is p = K+cG
G = K

G with critical mass k = rhp
1−p by (5).

Now, consider a dual-pricing scheme with the same backer’ goal G.37 Suppose the entrepreneur

provides an early-bird offer at price p1 < p to the initial G1 backers. Let K1 = p1G1 be the total

funds expected from early birds. Then, K −K1 funds need to be collected from G−G1 many late

birds, thus the late-bird price is p2 = K−K1
G−G1

. Note that p1 < p (or K1
G1

< K
G ) implies p2 > p (or

K−K1
G−G1

> K
G ): The provision of early-bird discount is at the cost of raising the late-bird price.

The new critical masses become k1 = rhp1
1−p1

for early birds and k2 = rhp2
1−p2

for late birds. Note

p1 < p < p2 implies k1 < k < k2: While it is easier to start the pledging cascade in the early-

bird stage, the cascade may stop when the first late bird arrives. A good design must balance

two prices well to avoid such stagnation. The next proposition provides a sufficient condition to

strictly increase the campaign’s ex-ante success probability, and the following example illustrates

the importance of balancing the early- and late-bird prices.

Proposition 7. The dual-pricing profile strictly increases the campaign’s ex-ante success prob-

ability over a single-pricing profile if:

(1) (non-stopping pledging cascade) G1
G1+T−G+1 ≥ k2, and

(2) (strict improvement) There exist n ≤ min(G−1, Td) and l ≤ T−G such that k > n
n+l+1 ≥ k1.

Example 1. This example shows that good and bad designs may have opposite impacts on the

campaign’s success probability. Suppose K = 70, c = 0, T = 100, Td = 30, h = 0.2 and r = 1.

36Early and late birds are distinguished by the prices they face.
37We assume the dual-pricing scheme maintains the same backers’ goal. Otherwise there is too much flexibility,

and the scheme design needs resorting to numerical methods, and is not theoretically tractable. For the same reason,
we do not discuss the optimal design.
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Under single-pricing, the optimal backers’ goal is found via a numerical method to be G∗ = 98,

with the price p = K
G∗ = 0.71 and critical mass k = rhp

1−p = 0.5. The campaign’s ex-ante success

probability is Prob(L̃ ≤ 2 | k = 0.5) = 38.9%.

(1) (A Good Design) The entrepreneur has two decision variables regarding the dual-pricing

profile: the early-bird price p1 and the offer amount G1. Two degrees of freedom allow for various

combinations of the design. Baselines are: p1 < p, but the offer cannot be over-provided. Consider

p1 = 0.5 being offered to the initial G1 = 10 buyers. Then k1 = rhp1
1−p1

= 0.2, a substantial decrease

from k = 0.5, and condition (2) is obviously satisfied. Now check the late-bird price. p2 =
K−p1G1

G∗−G1
=

0.74 and k2 = rhp2
1−p2

= 0.57. As G1
G1+T−G∗+1 = 10

13 > k2, condition (1) is also satisfied, meaning the

pledging cascade will not stop when the early-bird offers are sold out. It turns out this dual-pricing

scheme raises the ex-ante success probability up to Prob(L̃ ≤ 2 | k1 = 0.2, k2 = 0.57) = 66.2%.

(2) (A Bad Design) If the entrepreneur over-provides the offer at a lower price p1 = 0.25 and to

more buyers G1 = 20, k1 is further reduced to 0.0667, but the late-bird price becomes p2 = 0.77 and

the late-bird critical mass k2 = 1. By Lemma 1 such k2 can never be achieved while condition (1)

is violated. The campaign at most captures 20 early-bird common buyers plus 30 dedicated buyers,

50 < G∗, so Prob(L̃ ≤ 2 | k1 = 0.0667, k2 = 1) = 0. The campaign fails with certainty.

5 Economic and Managerial Implications

In the Extension some applied suggestions have been given to the entrepreneur, namely about the

best timing to utilize social network and the caveat in designing early-bird offers. In this Section,

we summarize and discuss more economic and managerial implications derived from the model.

Succeed under uncertainty The campaign’s success depends on two factors: sufficiently high

demand (quality), and reaching critical mass early (luck). Quality comes first, thus even if the

entrepreneur fakes funds in the beginning (which is restricted by most platforms), the campaign

still fails if the true demand cannot cover production costs.38 On the other hand, in standard

economic setting, trade would happen (in terms of social-welfare improving) if the demand is

sufficient to cover the production costs (as in the crowdfunding modelings by Chakraborty and

Swinney, 2021; Chakraborty et al., 2021; Strausz, 2017). However, such assertion is valid only in

an uncertainty-free environment. In Proposition 3, we have shown that sufficient demand (to cover

production costs) is not sufficient for a strictly positive success probability; more demand than that

38In addition, faking funds causes risk on the entrepreneur side. If the target is reached only by combining buyers’
pledges and the fake funds, it means the actual funds cannot cover production costs or conversely there will be
excessive productions (corresponding to the fake funds), causing losses for the entrepreneur. Such risk is deepened
if backers stop pledging once the campaign succeeds in fear of moral hazard (Strausz, 2017). Hence although early
momentum is crucial for campaign success, faking early funds is very risky and also restricted by most platforms.
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is needed for the campaign to be possible to succeed, and this additional requirement originates

from buyers’ uncertainty about the campaign’s outcome. That is, traditional wisdom only works

when buyers coordinate perfectly with each other. In an uncertain environment as crowdfunding,

qualitative projects eligible to initiate production in traditional markets may still be doomed to

failure in crowdfunding. Despite the benefits of crowdfunding financing especially for startups, it

seems the fruits are only in the reach of sufficiently high-quality projects.

Target the right crowd at the right time The marketing literature strand abounds in the dis-

cussion of market segmentation and targeted marketing (e.g., Goldstein and Lee, 2005; Johnson,

2013; Weinstein, 2013), which seem to keep eluding the crowdfunding research strand. Targeted

marketing is necessary in particular for capital-shy startups, as promotions and advertisements are

usually costly. This paper provides a natural segmentation for crowdfunding buyers, namely by

their hassle costs. In Subsection 3.1.2 we identified several potential groups of dedicated buyers:

impulse buyers (Hausman, 2000), big fans (of the product category), engaging customers (Pansari

and Kumar, 2017), internal and external social networks (Buttice et al., 2017), etc. These groups

are not necessarily dedicated buyers (k = 0), but in general represent low-k types, depending on

how low their hassle costs are, how much they gain from engaging in community activities, etc.

The idea given by the model is to bring dedicated (or low-k) buyers to the campaign as early as

possible, thus targeting the right crowd (while different groups may be reached in different online

communities/subreddits) at the right time (in the early funding stage). Among all, dedicated buy-

ers serve as the cornerstone of campaign success as they are the initial funding source, so without

a solid foundation of dedicated buyers, the attempts to bring in more common buyers might be of

no avail if the critical mass is yet to be reached.

Monitor the campaign The backers’ goal being close to total demand, plus an overall stable

arrival rate, imply that the funds should always grow proportionate to, or ahead of (if accounting

for the denser early arrivals), time; while the opposite holds for failing campaigns (consistent with

the empirical evidence, Figure 3 in Li et al., 2020). Sluggish growth, funds falling behind time

suggest either the campaign is of low quality thus doomed to failure, or the early momentum did

not form properly, which calls the entrepreneur to take action in trafficking dedicated buyers in. The

earlier to notice the sluggish growth and take actions before the campaign loses too many common

buyers, the more likely the campaign can come back to life, given it is a qualitative project.

Re-campaign or not A handful of studies have focused on entrepreneurial learning in crowdfund-

ing (Buttice et al., 2017; Lee and Chiravuri, 2019; Peterson and Wu, 2021; Yang and Hahn, 2015),

particularly about how past crowdfunding experiences affect entrepreneur’s decisions about, and
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performances in, new campaigns. However, one important question remains neglected: whether it

is worth to start the same failed campaign all over again (with potential modifications). Our model

suggests that bad-quality projects (insufficient demand), or qualitative campaigns failing to form

the early momentum (dedicated buyers arrive too late), both would fail in the end. As starting

a new campaign involves preparation and costs, the former is not worthy re-campaigning unless

the project is improved, while the latter might worth a trial. The question is how to distinguish

bad luck from bad quality. The model does not give an assertive answer but provide some clues

and insights. First, the number of dedicated buyers (Td) is an indicator of the campaign’s quality:

As shown, higher Td not only raises the lower bound of capturable buyers, but also improves the

probability distribution. And as suggested by the model, they usually reveal themselves despite

of the campaign’s progress. Hence, if the campaign fails but receives a good amount of pledges,

these are mostly dedicated buyers, and it is a strong signal for re-campaigning. On top of that,

if these pledges did not show up early but gradually accumulate over time, it implies the absence

of an early funding momentum, that dedicated buyers might have arrived too late, so a re-trial

might be worthy. On the other hand, failures with a small amount of pledges rushing in only at

the beginning is an indicator for bad-quality projects: Even the dedicated buyers have contributed

early, the critical mass is still not reached for common buyers; it is probably unreachable in the first

place because of insufficient demand. One caveat is that, since buyers are allowed to cancel their

pledges, the entrepreneur needs to monitor the campaign closely to get an accurate estimation of

dedicated buyers. If re-campaigning, the important task is to traffick dedicated buyers in as early

as possible, thus forging a dynamic and interactive campaign community as a way to increase the

campaign network’s social embeddedness (Hong et al., 2018), and maintaining relationship with

these supporters to transform them to one’s internal social network (Buttice et al., 2017) might be

a rewarding endeavor.

6 Concluding Remarks

We propose a behavioral crowdfunding model with boundedly rational buyers and success-probability

maximizing entrepreneur, explain some widely observed crowdfunding features, and derive rich eco-

nomic as well as managerial implications. It may seem desirable to calibrate the model, but there

are two major hurdles: first, high degree-of-freedom, since many buyer attributes affect the model

through one channel k, while there is no closed-form formula for L̃’s p.m.f for arbitrary k; second,

varying T and Td for different projects which are hard to observe for all crowdfunding campaigns.

Calibration may be made feasible by changing some basic setups of the model, or by adding addi-
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tional assumption about the campaign pool, which is left for future studies.

Other possible avenues to extend the current work include, for example, testing the model’s

robustness to more general ϕ functions (e.g., the exponential form derived from hazards model in

Li et al., 2020), as we take a linear specification mainly for tractability. Also, all buyers are assumed

to be bounded rational, while in reality some informed buyers may possess higher sophistication.

So the coordination between naive and experienced buyers can be considered. Another way is to

test the model’s robustness when the entrepreneur’s objective is not the success probability but the

revenue. In all, our paper may open a valuable research strand for behavioral crowdfunding theory,

aiming to provide better understandings of backers’ behaviors, to help the entrepreneur navigating

campaigns, and to give rise to new perspectives in evaluating crowdfunding mechanism as a whole.
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This supplement document (Sup) provides robustness checks for the baseline model in S1, and

proofs for all propositions, lemmas and claims (unless already enclosed in the paper) in S2, and

additional graph examples and wide tables for the proof in S3. Propositions 1 and 2 involve complex,

rigorous math reasoning, so two lemmas are provided and proved first. For notation convenience,

all G appearing in this material is an integer, which can be derived by taking the floor integer of

the real backers’ goal.

S1: Robustness check

This section conducts robustness check for the baseline model in four directions of perturbation:

demand uncertainty, strategic waiting, random (and denser early) arrival, and higher level of buyer-

side heterogeneity. Given the irregularity of the baseline maximization (discontinuous, only ap-

proximately convex, etc.), these assumption-perturbations are not analytically tractable, thus the

robustness check is approached by a mixture of theoretical reasoning and simulation examples.

S1.1: Demand uncertainty

The baseline model assumes the entrepreneur has perfect knowledge of the product’s market de-

mand, T and Td, calling for a robustness check. Instead of an accurate point estimation, the more

general scenario is that the entrepreneur knows only the distribution of T̃ and T̃d, with F1(T ) and

F2(Td) denoting the respective cumulative density functions with supports T and Td.

To test the robustness of our main result, Corollary 5 in main file, let us first unravel the key

factors leading to this result. A retrospect immediately reveals that (i) the fact that L̃’s p.m.f

diminishes quickly to 0 (ii) while the change of F (L | k) in k does not diminish to 0, two factors
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Notation Definition Property

K Production fixed cost Parameter

c Production marginal cost Parameter

p Product price Decision Variable

G Backers’ goal, p = K+cG
G Decision Variable

v Buyers’ valuation of the product, v = 1 Parameter

T Total number of buyers Parameter

Td Number of dedicated buyers Parameter

h Common buyers’ hassle cost Parameter

t Buyer’s arrival index, t ∈ {1, 2, ..., T} Variable

n Current number of pledges, n ∈ {0, 1, ..., t− 1} Variable

ϕ Buyer’s (behavioral) expectation of the campaign’s suc-

cess probability, ϕ = ρn/G
t/T , or ϕ = n

rt where ρ = G
rT

Variable

k critical mass, k = rh
G/(K+cG)−1 ≡ k(G) Decision Variable

Õ Buyers’ arriving order, with a typical element o ∈ O ⊂
{CB,DB}T

Random Variable

Ñ Number of captured buyers, with a typical element N ∈
{Td, Td + 1, ..., T}

Random Variable

L̃ Number of lost buyers, L̃ = T−Ñ , with a typical element
l ∈ {0, 1, ..., T − Td}

Random Variable

K Set of regular-form k’s, K = { 1
x ,

y−1
y : x, y ∈ {2, 3, 4, ...}} Set

Table 1: Variables and parameters used in the model

combined assure that lowering G after some point is not beneficial, thus leading to the assertion

that G∗ is close to T . The convexity of the maximization gives a stronger result that the first G

satisfying (8) in main file is G∗, while (i)(ii) functions as the necessary condition for G∗.

Hence, if (i)(ii) still holds under demand uncertainty, the main result should be robust. Incor-

porate demand uncertainty to the maximization problem:

max
G≥ K

1−c

∫
Td∈Td

∫
T∈T

F (T −G | k)dF1(T )dF2(Td) s.t. k = k(G) =
rh

( G
K+cG − 1)

.

Notice that T̃ and T̃d only affect F (T − G | k), so the objective function is actually a (prob-

abilistic) weighted sum of the F (T − G | k) given some T and Td, which has been studied afore

in some depth. That is, given some G, Ñ ’s p.m.f here, should be the probabilistic weighted sum

of the two-spike figures in Figure 3 in main file (using Ñ = T − L̃), with two spikes occurring at

capturing T buyers and capturing only Td buyers. Now focus on Ñ ’s distribution given some G, as

a weighted sum of F (·) given in the Maximization. Subsection 3.2.2 (C) in main file has shown that

T̃ and T̃d affect F (· | k) in two ways. First, they affect its support [Td, T ], while its density spikes

exactly at these two polar, so for Ñ ’s distribution given some G, we should expect two probability
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masses forming in the support of T̃ and T̃d whose shapes resemble F1(T ) and F2(Td), since Ñ = T

and Ñ = Td are the dominating highest spikes given any T and Td, as shown in Figure 3 in main

file. Second, they affect the shape of F (· | k). We know that with a higher T , Td
T decreases so

the probability tilts to Td-polar, leaving less probability at T -polar. While with a higher Td,
Td
T

increases so the probability tilts to T -polar, leaving less probability at Td-polar. Therefore, the

final distribution for Ñ , as a weighted sum of F (·), modifies F1(T ) and F2(Td) in a way that, the

higher T or Td is, the less probability is allocated there, thus the probability density is right-skewed

compared to F1(T ) and F2(Td).

The following Figure S1 shows the captured buyer, Ñ ’s p.m.f when T̃ and T̃d follow Poisson

distributions with means 180 and 35. The two spikes reflect the weighted sum of the afore-studied

two-spike figures, hump shape resembling Poisson (i.e., hump shapes for Poisson and Gaussian,

rectangular for Uniform, etc.). The two humps are also right-skewed, with highest probability

occurring at Td = 33 and T = 177, instead of the original expectations Td = 35 and T = 180.

Finally, how widespread the two spikes are depends on the variance of T̃ and T̃d; as long as the

variance is not too high, we shall see Ñ ’s probability diminishes to 0 quickly as Ñ moves down

from T̃ ’s mean. Therefore, (i) still holds if T̃ and T̃d’s variances are not too high.1

Next, we need to check (ii). It is easily seen that the objective function’s partial derivative with

respect to k is the probabilistic weighted sum of dF
dk (T − G | k) < 0, because k only appears in

F (·). Thus the weighted sum is close to 0 only if dF
dk is close to 0 for all T and Td, which is not the

case given Lemma 4 in main file. Hence (ii) is satisfied. And the result in Corollary 5 in main file

follows, i.e., G∗ is set close to the expected Ñ for the all-captured mass (i.e., 177 in the Figure)

which is approximately the mean of T̃ (i.e., 180 in the Figure) given the skewness is not too much,

where Ñ ’s probability has not diminished to 0 (as G decreases). In Figure S1, the optimal G∗ is

solved to be 160.

In a nutshell, since demand uncertainty is essentially a probabilistic weighted sum of the original

problem, the main intuition, that the entrepreneur should strive to set G∗ close to the (expected)

total demand T̃ to maximize the campaign’s success probability, carries over.2 However, this also

1That is, if the entrepreneur’s estimation of market demand is too rough, or the market demand itself is overly
variant, we may still observe the project to be far more than 100% funded.

2However, the question of how the entrepreneur’s strategy G∗ changes with demand uncertainty does not have a
clear-cut answer according to (7) in main file. Demand uncertainty adds variance to the two spikes, so compared to
the deterministic case, L̃’s (Ñ ’s here) p.m.f diminishes at a slower speed as l increases (Ñ decreases). But how dF

dk

responds to higher variance is unclear, as now F (L | k) is a weighted sum for different L’s given different realization
of T̃ ’s. Compared to a deterministic case with T̃ equal the mean of its distribution, F (L | k) is evaluated at higher
L (thus higher dF

dk
) when T̃ is greater than T̃ ’s mean, and vise versa, so whether dF

dk
as a weighted sum is higher or

lower than the deterministic case is indeterminate. The same logic holds for random arriving time, which essentially
adds variance to the two spikes along the time axis. Though analytically unclear, simulation results reveal that in
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Figure S1: Ñ ’s p.m.f when T and Td follow Poisson distribution

Note: This figure shows Ñ ’s p.m.f when T̃ and T̃d follow Poisson distributions with means 180 and 35. Marginal cost
is simplified as c = 0, while other parameters are specified in the text box. G∗ is solved to be 160 with the success
probability 43%. The campaign is most likely to get 33

160
= 20.6% funded or 177

160
= 110.6% funded.

means that it is possible to observe almost-successful failures, i.e., 140 < Ñ < 160 in the Figure,

which in reality is extremely unlikely to happen. Apparently, the current model, with a simplified

framework of backers’ incentive and behaviors, cannot directly explain the puzzle. We thus give two

realistic explanations beyond our model setup, one related to strategic-waiting buyers, the other

related to warm-glow donors.

First, buyers who have chosen the wait-and-see strategy may come back at the end of the

campaign, and if the campaign is close to success, they will pledge and nudge the campaign to

success (more on this point in the next Subsection). Second, it is found that many non-equity

crowdfunders are warm-glow altruists with non-monetary incentives to support creative projects

(Cecere et al., 2017). Specifically, Deb et al. (2019) wrote “There is a spike in donations and

purchases [which may include those wait-and-see buyers] just before success, but once a campaign

reaches its goal, donations drop...” Donors nudge almost-successful failure to 100% success, while

most times the former force dominates, namely the p.m.f decreases at a slower speed making the action of decreasing
G (to include more l’s) more beneficial, so G∗ is lower than the deterministic counterpart in these cases. For example,
under the same parameter setting as Figure S1 with T = 180 and Td = 35, the optimal G∗ is solved numerically to be
170. Again, how G∗ changes with higher variance in the two spikes generally needs case-by-case analysis, depending
on parameters as well as how much variance is added.
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wait-and-see buyers and other normal buyers (who arrive after the donor’s action) may further

make last-minute pledges crossing the 100% threshold, resulting in slightly more than 100% funded.

Eventually, we may observe the blue-bar probabilities to the left of G∗ in Figure S1 load onto the

orange bars to the right of G∗, almost-successful failures eliminated, while a downward sawtooth

pattern may appear at the right of G∗, just as in Figure 1 in main file. Indeed, this sawtooth pattern

(100% being most likely with decreasing likelihood over 100%) may due to a lot of realistic factors.

Another explanation is provided by Strausz (2017), that in fear of moral hazard, some consumers

stop pledging once the campaign reaches its goal and seek for purchase in the after-market, so the

campaign is likely to stop right at 100%. For the sawtooth pattern at the barely-funded zone, since

buyers are allowed to cancel their pledge when the campaign is live, they may well do so when the

campaign unravels towards an apparent failure, thus tilting the probability bars to 0% funded.

All these nudging powers (wait-and-see buyers, donors, consumers fearing moral hazard, and

canceling backers), combined with our basic model, give rise to predictions consistent with Figure

1 in main file. But these factors cannot replace the model, since the latter is essential in generating

two probability masses around barely funded and just-adequately funded, explaining why halfway

failure and blockbuster success are both small-probability events.

S1.2: Wait-and-see strategy

Many platforms facilitate strategic waiting for backers who have not made up their mind to pledge:

They can follow the campaign and receive reminders when the campaign is about to close. That

is, if a common buyer arrives at the campaign and decides not to pledge due to high uncertainty

about whether the campaign can succeed, she can choose to wait and see and come back later.

Indeed, if wait-and-see strategies are used to reduce the uncertainty about the campaign’s

outcome, it is rational for buyers to come back in the very end, when such uncertainty is the

smallest (which is also how major platforms design the timing of such reminders). Note that even

if buyers come back in the end, the pledging decision may still involve hassle costs (sign up, make

the order, release private information...), so they would not just pledge without thinking. Now,

how would such strategic waiting affect the model’s result? First, it is easily seen that these buyers

would pledge if the campaign has already succeeded, not pledge if the campaign is far from success.

What if the campaign is close to success, but more than one pledge (from this buyer) is needed?

Possibilities are: (i) They can pledge more than the price, up to v
1+h if that helps the campaign to

succeed (as analyzed in Hu et al., 2015). (ii) They may expect other lurking wait-and-see backers to

collaboratively make the campaign successful. (iii) They may expect donors to help complete the
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campaign. All these possibilities call for the buyer to pledge, thus nudging the almost-successful

campaigns to real success, while whether and which of the scenarios would happen is up to the

buyer’s characteristics. Deb et al. (2019) does document a last-minute surge of purchases.

To summarize, strategic waiting adds funds for nearly/already successful campaigns, while how

much it adds depends on how many buyers choose to come back and to collaborate for close

successes, thus making almost-successful failures less likely to happen.

S1.3: Random arriving time

Many crowdfunding studies have documented a U-shape funding dynamic: The contribution tends

to spike at the beginning and the end of the campaign (see e.g., Deb et al., 2019). The last-minute

funding spike could owe to donors and strategic-waiting buyers. For the early spike, it may reflect

high arrival rate when the campaign just starts, either because of the platform’s algorithm for new

campaign exposures or due to the entrepreneur’s diligent early promotions. Therefore, it is desirable

to relax the model’s arrival timing to allow for denser arrivals in the beginning.3 The question is

whether the two probability spikes are still present with denser, random arrival in the beginning.

Since the problem cannot be analytically solved, we use simulations to test its robustness by varying

model parameters, and the simulation results support our earlier results: There are two probability

spikes if there is no drastic difference for early- and late-period arrival rate; If there is, then the

campaign may only have the all-captured spike because denser early arrival is favourable.

In the following Figure S2 we provide two simulation examples for (i) deterministic arrival with

denser arrival in the beginning (which is a close analogue to our basic model), and (ii) random

arrival with higher arrival rate in the beginning. The results show that L̃’s p.m.f in (i) resembles

Figure 3 in main file, only that denser early arrival (while fixing T , so sparser late arrival) improves

L̃’s p.m.f by tilting probabilities to the all-captured spike, because denser early arrival makes it

easier to reach critical mass early on. Similarly, Ñ ’s p.m.f resembles Figure S1 because (ii) may be

seen as a probabilistic weighted sum of (i) along the time axis, resulting in higher variance at the

two spikes.

In theory, denser early arrival raises a new question that is absent in the baseline model: Does

the pledging cascade stop when the arrival rate suddenly drops? Recall in the basic model the two

probability spikes correspond to two scenarios: Pledging cascade starts very early, or it never starts.

That is why a medium number of lost buyers is not likely—The cascade is unlikely to start halfway.

3Dense arrival at the deadline does not change the preceding funding dynamics, and has been discussed in the
previous Subsection.
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Now (a) if the cascade starts very early, by the time the arrival rate drops down, the campaign

should have accumulated a good number of pledges, thus the cascade would continue even if the

next buyer arrives after some while. The more drastic the arrival rate difference is, the later the

next buyer arrives (unfavourably), but the more pledges have been collected within the short early

period (favourably). It turns out the latter force always dominates. In fact, if one allows part of T

buyers arrive earlier than before in the beginning, the rest evenly distributed along the time, it is

easily seen that everyone arrives earlier than before except for the last buyer! (b) If the cascade has

not started, it is unlikely to start after the arrival rate drops. Is it possible to have an additional

spike where the campaign captures exactly the early-period buyers? If there are many such buyers,

then reasoning (a) carrier over; if there are few of them, even if they form a spike, it should be

near the dedicated-only spike because of their small amount. In all, our basic result seems robust

to denser, random early arrival, accounting for the U-shape funding dynamics observed in data.
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Figure S2: Denser early Arrival, deterministic time (top) and stochastic time (bottom)

Note: (1) The top figure displays simulation results with 1,000 repetition for each parameter pair. a ∗ T buyers

arrive evenly (i.e., deterministic time) before b ∗ Duration, while the other (1 − a) ∗ T buyers arrive evenly during

the later (1− b) ∗Duration, a > b meaning denser early arrival, and T is the same for all scenarios. So the blue bars

are the benchmark baseline model, while increasing a further tilts the arrivals to the early period, which increases

the campaign’s success probability, reflected in higher probability around the all-captured spike. (2) The bottom

figure displays simulation results with 10,000 repetition. Buyers’ arrivals are assumed to follow a Poisson process,

i.e., the time interval (∆t) between two arrivals follows an exponential distribution. The duration is T = 300 periods.

For the early 10% duration, ∆t is generated from an exponential distribution with mean 1
2
, and 9

8
for the later 90%

duration. So on average, E(∆t) = 0.1
1/2

+ 0.9
9/8

= 1, thus 300 expected total buyers. Since exponential distribution

is memoryless, each arrival is generated independently; and upon each arrival, the buyer’s type is drawn from a

Bernoulli trial with probability 0.3 to be a dedicated buyer. So this example is the stochastic variation of the orange

bars a = 0.2(= 10%
1/2

), b = 0.1 in top figure. Random arrival increases the variance of the two probability spikes.
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S1.4: Buyer heterogeneity

In Subsection 3.2.2 (C) in main file we have demonstrated that buyers’ heterogeneity may emerge

from different aspects (e.g., v, h, r), but all affecting the model via one variable, their critical

masses k. Hence, higher heterogeneity means more types of buyers with different k’s.

In the following Figure S3 we give an example of four types: k0 = 0 (dedicated buyer), k1 =
1
3 ,

k2 = 1
2 , k3 = 2

3 , with n0 = n1 = n2 = n3 = 25 being the number of each type. We use simulation

to get L̃’s p.m.f, which turns out to retain the two-spike feature. Further varying the k’s and n’s

gives us similar results. Why isn’t additional spike forming? The answer is similar to that for

denser early arrivals, that once the cascade starts for low-critical-mass (say, k1) buyers, the funds

accrue from k0 and k1 buyers and by the time k2/k3 buyer arrives their critical masses are likely

to have been achieved. For example, when the third k1 buyer observes n
t = 1

3 and starts to pledge,

the next buyer would observe n
t = 2

4 and pledge if he is k0, k1 or k2-type. Indeed, the probability

that cascade starts for low-k buyers but stops for high-k buyers is extremely low (the cascade stops

only if there are consecutive arrivals of high-k buyers). On the other hand, the probability is low

to lose all high-k buyers before the cascade starts, because these buyers must all arrive very early

before other buyers show up and such arriving order has low probability. Even if it happens, then

the campaign is unlikely to regain momentum after losing so many buyers and would end up in the

dedicated-only spike. Therefore, both simulation and theoretic reasoning support that there would

still be two spikes in the presence of higher heterogeneity among buyers, thus our main results are

robust.

With higher heterogeneity, the ideal scenario is to have buyers arrive in the order of their k’s

(low to high). Using the previous example, dedicated buyers still need to arrive very early to

accumulate funds, but the best case is to have k = 1
3 arrive soon after, because these buyers’

required critical mass is the lowest thus the least dedicated buyers are required to arrive before

them. Then low-k buyers accumulate funds and help achieving the critical masses for all types of

buyers, leading to a potential campaign success. However, this is just the ideal scenario while in

reality buyers’ arrivals are subjected to many random factors. Nevertheless, the theory provides

a trafficking benchmark for the entrepreneur: The early trafficking target should be low-k buyers,

i.e., buyers with higher product valuation (category fans), lower hassle costs (impulse buyers or

engaging customers), better optimism (social networks).
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Figure S3: Baseline Model with Four Types of Buyers

Note: This figure shows Ñ ’s p.m.f when there are 100 buyers of 4 types, each type’s pledging threshold k and amount

n shown in text box. Each type has 25 buyers. The reason to have the same amount of each type is to (i) maximize

the likelihood for additional spikes to show up (which turns out to be not the case, agreeing with the model’s

robustness) (ii) simplify the theoretic enumeration. We use theoretic enumeration method to derive Prob(Ñ = 100),

and Prob(Ñ = 99). For Prob(Ñ = 100) or losing 0 buyer, it must be: at t = 1, k0-type arrives; at t = 2, since

n
t
= 1

2
, k0/k1/k2-type arrives, and the pledging cascade starts at t = 3 when n

t
= 2

3
. So there are 3 possible arriving

orders. Using combinatorics, the probability is 18.7%. Similarly, for Prob(Ñ = 99), the 1 lost buyer is possible to be

lost at t = 1 or t = 2, and manual enumeration gives rise to 72 possible arriving orders, while the total probability

is 7%. As seen, enumeration’s complexity increases rapidly, and we cannot do this for all N . So we use simulation

to generate the graph: Instead of calculate the possibility manually, we shuffle (Fisher–Yates shuffling) the arriving

order for 10,000 times and record the number of captured buyers for each shuffle using the behavioral rule. The figure

shows that the shuffle gives a consistent result as the theoretic enumeration for Prob(Ñ = 100) and Prob(Ñ = 99),

thus the simulation is unbiased. To conclude, the two-spike result (thus the model) is robust to higher heterogeneity,

and the reason is that the cascade is unlikely to stop when high-k buyer arrives once started by low-k buyers in the

beginning.
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S2: Proofs

S2.1: L̃’s Distribution for k = 1
x

Definition 1. Given k, define n
n+l+1 as the pledging threshold for the l, such that n

n+l+1 ≥ k

where n is the smallest integer satisfying this inequality. L̃’s p.m.f is directly calculated from these

pledging thresholds.

2.1.1 An illustration with k = 1
3

Fixing the number of buyers (T ) and dedicated buyers (Td), we are interested in the distribution of

the lost buyers L̃ when the entrepreneur sets a backers’ goal such that the critical mass k(G) = 1
3 .

Specifically, we want to derive Prob(L̃ = l) for all l ∈ {0, 1, ..., T − Td}.

First, consider Prob(L̃ = 0). If the first arrival is a CB (common buyer), as n = 0 and t = 1,

she would not pledge since 0
1 < 1

3 . For L̃ = 0, the first arrival must be a dedicated buyer (DB).

If so, the second buyer will pledge regardless of her type, as 1
2 > 1

3 , and meanwhile the pledging

cascade starts given n+1
t+1 > n

t . So, the first arrival being a DB is necessary and sufficient for L̃ = 0,

no matter in what order the rest of buyers arrive. Therefore, Prob(L̃ = 0) = CTd−1
T−1 /CTd

T .

Next, if L̃ = 1, the first arrival must be a CB who would not pledge, otherwise L̃ = 0. The

second arrival must be a DB, otherwise L̃ ≥ 2. Then the third arrival will always pledge, as 1
3 ≥ 1

3 ,

and the pledging cascade starts. Therefore, the first two arrivals being (CB,DB) is necessary and

sufficient for L̃ = 1, and Prob(L̃ = 1) = CTd−1
T−2 /CTd

T .

Similarly, let the initial 4 arrivals be ordered as (CB,CB,DB,DB), then the 5th buyer observing

2
5 > 1

3 will pledge and the pledging cascade starts. Readers can check that this is necessary and

sufficient for losing exactly 2 buyers. So Prob(L̃ = 2) = CTd−2
T−4 /CTd

T .

The key technique to derive such probabilities is to place exactly l CBs in the front who do

not pledge, accompanied by n DBs such that n
l+n+1 ≥ k, so the (l+ n+ 1)th buyer will pledge and

the cascade starts afterwards.4 Such n
l+n+1 is defined as the pledging threshold for l given some k,

from which L̃’s p.m.f is directly calculated. The complexity of such ordering grows when l becomes

larger. For instance, if L̃ = 3, we need to place 3 CBs in the front accompanied by 2 DBs so that

the 6th buyer who faces 2
6 ≥ 1

3 will pledge. However, the first arrival must be a CB, otherwise

L̃ = 0. Similar restrictions need to be considered for L̃ ̸= 1, 2. There turns out to be two ways to

order the front 5 buyers: (CB,CB,CB,DB,DB) and (CB,CB,DB,CB,DB). These orderings

4The smallest such n would suffice because it already secures the cascade to happen, and it does not matter in
what order the rest of buyers arrive.
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are the necessary and sufficient conditions for L̃ = 3. Therefore, Prob(L̃ = 3) = 2 ∗ CTd−2
T−5 /CTd

T .

For any critical mass k ∈ (0, 1), L̃’s p.m.f can be derived similarly. For example, if k = 1
2.5 ,

Prob(L̃ = 0) is the same as that of k = 1
3 , since

1
2 > 1

2.5 ; but Prob(L̃ = 1) is different, since 1
3 < 1

2.5 .

For the latter, the initial 3 buyers must be ordered as (CB,DB,DB), for the 4th buyer to observe

2
4 > 1

2.5 and to start the pledging cascade. So Prob(L̃ = 1) = CTd−2
T−3 /CTd

T when k = 1
2.5 , which is

lower than CTd−1
T−2 /CTd

T for k = 1
3 . Intuitively, a higher critical mass worsens L̃’s distribution in the

sense that the campaign is likely to lose more buyers.

When T and Td are fixed, the campaign’s outcome depends entirely on how these buyers arrive

in order. The campaign must achieve the critical mass, or in other words, the funding progress

must gain a certain level of momentum (as often used in the financial market) to convince the

common type to pledge. The entrepreneur can lower the critical mass by lowering the price, which

partially cancels out the common buyers’ hassle cost and makes them more prone to pledge, but

meanwhile it is harder to achieve the higher backers’ goal.

2.1.2 Lemma 1

Definition 2. Let Bx be a matrix with a typical entry b(i, j). Bx is defined recursively as follows.

For the first row, b(1, 1) = x, b(1, 2) = 1, and b(1, j) = 0 for all j ≥ 3. For the (i+ 1)th row where

i ≥ 1, b(i+ 1, 1) =
∑x

s=1C
s
xb(i, s) and b(i+ 1, j) =

∑x
s=0C

s
xb(i, j − 1 + s) for all j ≥ 2.

Definition 3. For some n ∈ {1, 2, 3, ...}, let amn be a sequence defined via the matrix Bx, indexed

by m where m ∈ {1, 2, 3, ..., x − 1}. If n = 1 or 2, am1 = 1 and am2 = m for all m. If n ≥ 3,

amn =
∑m

s=1C
s
mb(n− 2, s) for all m.

Lemma 1. Suppose k = 1
x for some x ∈ {2, 3, 4, ...}. For notation convenience, divide l by (x− 1)

and let (n− 1), (m− 1) denote the quotient and remainder.

1. When Td ≤ G− 1

(i) For all l in 0 ≤ l ≤ min(Td(x− 1)− 1, T − Td − 1),

Prob(L̃ = l) = amn
CTd−n
T−(x(n−1)+m)

CTd
T

(ii) If Td(x− 1) ≤ T − Td − 1, for those l in Td(x− 1) ≤ l ≤ T − Td − 1, Prob(L̃ = l) = 0.

2. When Td ≥ G

(i) For those l in 0 ≤ l ≤ min((G− 1)(x− 1)− 1, T − Td − 1), Prob(L̃ = l) is derived the same

as 1(i).
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(ii) If (G− 1)(x− 1) ≤ T − Td − 1, for those l in (G− 1)(x− 1)− 1 ≤ l ≤ T − Td − 1, write l

as l = (G− 1)(x− 1) + e where e ∈ {0, 1, ...(T − Td − 1)− (G− 1)(x− 1)}, and

Prob(L̃ = l) = (
x+e∑
s=1

Cs
x+eb(G− 3, s))

C
Td−(G−1)
T−(x(G−1)+e)

CTd
T

.

3. In both cases, Prob(L̃ = T − Td) = 1−
∑T−Td−1

l=0 Prob(L̃ = l).

2.1.3 Proof of Lemma 1

Let Cases(L̃ = l) denote the total number of arriving orders that map to an outcome of l many lost

buyers. If readers refer to proof of Proposition 3 in the main paper, Cases(L̃ = l) is ∥ f−1({l}) ∥,

where f : O → {0, 1, ..., T − Td} is the function mapping any arriving order to an outcome of l

many lost buyers. We start with an example of k = 1
3 .

An Example of x = 3

For l = 0, the first arrival must be a DB (dedicated buyer) because all initial arrivals of CBs

(common buyer) will not pledge before a DB shows up (0t < k). Assume the first arrival is a DB,

then the second buyer facing 1
2 ≥ k = 1

3 will pledge regardless of her type. Thus the pledging cascade

starts, as n+1
t+1 > n

t . So, Cases(L̃ = 0) = CTd−1
T−1 and Prob(L̃ = 0) = Cases(L̃ = 0)/CTd

T = Td
T .

Notice the key technique to derive Cases(L̃ = l) for some l is to find the smallest n such that

n
n+l+1 ≥ k (n = 1 in the previous case). That is, the campaign loses l many CBs who had arrived

early before the critical mass is reached, accompanied by nmany DBs to support the loss by forming

and reaching the critical mass n
n+l+1 ≥ k, so that the (l+n+1)th buyer will pledge regardless of her

type, and thus the pledging cascade starts, in which case the campaign loses exactly l many CBs

eventually. The smallest such n would suffice because it already secures the cascade to happen,

and it does not matter who is the next to arrive. Henceforth, given k,we define the key threshold

n
n+l+1 as the pledging threshold for each l.

However, having l many CBs and n many DBs in the front is only a necessary condition for

L̃ = l. They must be additionally placed in a nice order such that the cascade starts exactly at the

(l+ n+ 1)th arrival, not earlier. That is to say, when deriving Cases(L̃ = l), we need to carefully

exclude those cases such that L̃ = 0, 1, ..., l − 1. So, to derive Cases(L̃ = l) we need to take into

account: (1) the necessary condition for L̃ = l associated with its pledging threshold (l CBs and

n DBs being placed before the cascade starts at the (l + n + 1)th arrival), and (2) the sufficient

conditions for L̃ ̸= 0, 1, ..., l − 1. These requirements naturally lead to a recursive method to solve

for L̃’s p.m.f.
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To simplify the notation, we have the next two definitions.

Definition 4. Define “{ν} = / ≥ κ” to be the statement “in the initial ν arrivals, the number of

CBs is equal to/ no less than κ”.

Definition 5. Define “{ν}2 = / ≥ κ” to be the statement “in the initial ν+2 arrivals, the number

of CBs is equal to/ no less than κ+ 2”.5

Recall we have written l as a multiple of (x−1), in this case x = 3 and thus l = 2(n−1)+(m−1).

It turns out that for each l, such n derived from the division of l and (x−1) is exactly the n defined

in the pledging threshold (the smallest n that makes the inequality to be true). The examination

is left to readers. In Table 2, we derived conditions on the arriving order of DB and CB for L̃ = l

for each l. Because n represents the number of DBs that must be placed in the front to reach the

critical mass, it is called DB hit in the table.

l Pledging DB hit m Necessary condition Sufficient condition

threshold (n) for L̃ = l for L̃ ̸= l
0 1/2 1 1 {1} = 0 {1} = 1

1 1/3 1 2 {2} = 1 {2} = 2

2 2/5 2 1 {2}2 = 0 {2}2 ≥ 1

3 2/6 2 2 {3}2 = 1 {3}2 ≥ 2

4 3/8 3 1 {5}2 = 2 {5}2 ≥ 3
5 3/9 3 2 {6}2 = 3 {6}2 ≥ 4

6 4/11 4 1 {8}2 = 4 {8}2 ≥ 5
7 4/12 4 2 {9}2 = 5 {9}2 ≥ 6

8 5/14 5 1 {11}2 = 6 {11}2 ≥ 7
9 5/15 5 2 {12}2 = 7 {12}2 ≥ 8

... ... ... ... ... ...
2(n− 2) (n− 1)/(3n− 4) n− 1 1 {3n− 7}2 = 2n− 6 {3n− 7}2 ≥ 2n− 5

2(n− 2) + 1 (n− 1)/(3n− 3) n− 1 2 {3n− 6}2 = 2n− 5 {3n− 6}2 ≥ 2n− 4

2(n− 1) n/(3n− 1) n 1 {3n− 4}2 = 2n− 4 {3n− 4}2 ≥ 2n− 3
2(n− 1) + 1 n/3n n 2 {3n− 3}2 = 2n− 3 {3n− 3}2 ≥ 2n− 2

... ... ... ... ... ...

Table 2: Conditions for L̃ = l, x = 3

The last two columns of Table 2 represent the conditions that are crucial to calculate Cases(L̃ =

l). The necessary condition for L̃ = l directly follows the pledging threshold. For instance, for L̃ = 1,

the necessary condition is {2} = 1, i.e., 1 CB among the initial 2 arrivals. However, for L̃ ̸= 0, we

need to have its sufficient condition {1} = 1, i.e., the first arrival being a CB. Combining these two,

5For instance, {2} = 2 means the initial 2 arrivals are all CBs; and {2}2 = 0 means the initial 4 arrivals include 2
CBs and 2 DBs.
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the sufficient and necessary condition for L̃ = 1 becomes {2} = 1 and {1} = 1, uniquely pinning

down the initial two arrivals as (CB,DB).

Table 2 shows all such conditions for each L̃ = 2(n − 1) + (m − 1), where n = 1, 2, ... and

m = 1, 2. The sufficient and necessary conditions for L̃ = l include (1) the necessary condition for

L̃ = l and (2) the sufficient conditions for L̃ ̸= 0, 1, ..., l− 1. For instance, L̃ = 3 if and only if all

4 single-underlined conditions in Table 2 are satisfied.

Readers may notice that for L̃ ̸= 0 or 1, the first two arrivals must be (CB,CB), i.e., {2} = 2.

As it must be satisfied for all l = 2, 3, 4..., we change the notation for all l ≥ 2 to “{·}2 = ·” as

defined above, thus only considering the placement from the third arrival.

The necessary condition is easily taken care of. The tricky part is to take care of all sufficient

conditions for L̃ ̸= 0, 1, ..., l−1, and the complexity increases with l. How to approach Cases(L̃ = l)

while taking into account all these conditions? First, notice these sufficient conditions can be

reduced. {ν}2 ≥ κ ⇒ {ν − 1}2 ≥ κ− 1, that is, if there are at least κ+ 2 CBs in the initial ν + 2

arrivals, it must be true that there are at least κ+1 CBs in the initial ν +1 arrivals. So, it suffices

to consider all the double-underlined conditions, that is, {3(n − 1)}2 ≥ 2(n − 1), as each of them

implies the one condition above it in the table.

We need to generate an auxiliary matrix Bx=3 = (b(i, j))i,j∈{1,2,3,...} which helps to identify

Cases(L̃ = l) with all the double-underlined conditions in Table 2 considered. The definition for

an entry b(i, j) is “the number of cases to place the initial 3i + 2 buyers, such that {2} = 2,

{3i}2 = 2i + j − 1 and {3n}2 ≥ 2n for all n < i”. That is, the initial 2 arrivals are CBs, the

following 3i arrivals contain 2i + j − 1 CBs, and for all n < i, the following 3n arrivals (from the

third arrival) contain no less than 2n CBs. With the definition, j ≤ i + 1 follows naturally, as

2i+ j − 1 ≤ 3i from the expression {3i}2 = 2i+ j − 1. So, let b(i, j) = 0 for all j > i+ 1. We will

discuss shortly how to connect Bx and Cases(L̃ = l).

Definition 6. Let {3i}2B = 2i + j − 1 denote the number of cases to place the initial 3i + 2

many buyers such that {2} = 2, {3i}2 = 2i + j − 1 and {3n}2 ≥ 2n for all n < i. Then,

b(i, j) = Cases({3i}2B = 2i+ j − 1).6

Now, we are going to generate Bx based on the definition of its entry, and show that the Bx

generated in this way is the same as defined in Definition 2.

When i = 1 (the first row), b(1, 1) = Cases({3}2B = 2) = C2
3 = 3. Place 2 CBs in the first and

second, and choose 2 out of the 3 following arrivals (C2
3 ) to place the other 2 CBs. Since i = 1,

6Notice, the notation {3i}2B = 2i+ j − 1 represents a stricter placement requirement than {3i}2 = 2i+ j − 1, as
it takes into account extra conditions.
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no more conditions regarding n < i need to be considered. Similarly, b(1, 2) = Cases({3}2B = 3) =

C3
3 = 1, and b(1, j) = 0 for all j ≥ 3. So, the first row of Bx has specified how to place the initial 5

buyers as defined.

When i = 2 (the second row) and j = 1, we need to consider {2} = 2, {6}2 = 4, and also

{3}2 ≥ 2. For the last one, there are two possibilities, {3}2 = 2 and {3}2 = 3. Notice {3}2 =

2 ⇔ {3}2B = 2, and {3}2 = 3 ⇔ {3}2B = 3, which coincide with b(1, 1) and b(1, 2). Therefore,

b(2, 1) = Cases({6}2B = 4) = Cases({3}2 = 2)C4−2
6−3+Cases({3}2 = 3)C4−3

6−3 = b(1, 1)C2
3+b(1, 2)C1

3 .

Similarly, b(2, 2) = Cases({6}2B = 5) = Cases({3}2 = 2)C5−2
6−3 + Cases({3}2 = 3)C5−3

6−3 =

b(1, 1)C3
3 + b(1, 2)C2

3 , and b(2, 3) = Cases({6}2B = 6) = Cases({3}2 = 3)C6−3
6−3 = b(1, 2)C3

3 . The

second row of Bx has specified how to place the initial 8 buyers as defined.

When i = 3 (the third row) and j = 1, we need to consider {2} = 2, {9}2 = 6, {3}2 ≥ 2

and {6}2 ≥ 4. Notice for the last one, there are 3 possibilities, {6}2 = 4, 5, 6, corresponding to

b(2, 1), b(2, 2) and b(2, 3), which have already taken into account {3}2 ≥ 2 and {2} = 2. Therefore,

b(3, 1) = Cases({9}2B = 6) = Cases({6}2B = 4)C6−4
9−6 + Cases({6}2B = 5)C6−5

9−6 + Cases({6}2B =

6)C6−6
9−6 = b(2, 1)C2

3 + b(2, 2)C1
3 + b(2, 3)C0

3 .

Similarly, b(3, 2) = Cases({9}2B = 7) = Cases({6}2B = 4)C7−4
9−6 + Cases({6}2B = 5)C7−5

9−6 +

Cases({6}2B = 6)C7−6
9−6 = b(2, 1)C3

3 + b(2, 2)C2
3 + b(2, 3)C1

3 , etc.

It is left to readers to check that, the recursive formula for the (i+1)th row of Bx is, b(i+1, 1) =∑3
s=1C

s
3b(i, s), and b(i+ 1, j) =

∑3
s=0C

s
3b(i, j − 1 + s) for j ≥ 2,7 which coincides with Definition

2.

Based on matrix Bx, the last step is to derive Cases(L̃ = l) for each l = 2(n − 1) + (m − 1),

m = 1, 2. From the last two rows of Table 2, the necessary condition is {3n−5+m}2 = 2n−5+m,

and the sufficient conditions are {3(n− 2)}2 ≥ 2(n− 2), ..., {3}2 ≥ 2 and {2} = 2.

When l = 2(n− 1), conditions are {3n− 4}2 = 2n− 4 (to place the initial 3n− 2 buyers, with

2n− 2 CBs and n DBs), {3(n− 2)}2 ≥ 2(n− 2), {3(n− 3)}2 ≥ 2(n− 3), ..., {3}2 ≥ 2 and {2} = 2.

Combining the first two, we get {3n− 6}2 = 2n− 4. Notice, {3n− 6}2 = 2n− 4 coupled with other

conditions, {3(n − 3)}2 ≥ 2(n − 3), ..., {3}2 ≥ 2 and {2} = 2, correspond to b(n − 2, 1) as it is

defined to be Cases({3n− 6}2B = 2n− 4). Therefore, Cases(L̃ = 2(n− 1)) = b(n− 2, 1)CTd−n
T−(3n−2),

with CTd−n
T−(3n−2) ways to place the rest buyers.

Similarly, when l = 2(n− 1) + 1, conditions are {3n− 3}2 = 2n− 3 and {3n− 6)}2B ≥ 2n− 4.

For the latter, there are two possibilities: {3n − 6}2B = 2n − 3, that is, b(n − 2, 2), leaving 0 CB

in the following three arrivals; or {3n − 6}2B = 2n − 4, that is, b(n − 2, 1), leaving 1 CB in the

7Notice Cβ
α = Cα−β

α , and we define C0
α ≡ 1.
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following three arrivals (but notice the last arrival cannot be CB, otherwise the pledging cascade

should have started from this instead of the next buyer). Therefore, Cases(L̃ = 2(n − 1) + 1) =(∑2
s=1C

s
2b(n− 2, s)

)
CTd−n
T−(3n−1).

These expressions are the same as in Lemma 1 1.(i) when x = 3.

Analogue to General x

[ Insert Table 4 here. ]

Table 2 is a special case of Table 4.8 Now readers can see why we write l as multiples of (x−1):

The pledging thresholds show a cyclic pattern with a period of (x − 1). The necessary condition

for L̃ = l follows directly from the pledging threshold, and the sufficient condition comes from

the contrapositive statement. Again, the sufficient and necessary conditions for L̃ = l include the

necessary condition for L̃ = l and the sufficient conditions for L̃ ̸= 0, 1, ..., l − 1. An example is:

L̃ = x if and only if all the single-underlined conditions are true in Table 4.

Define the notations and matrix Bx’s entry similarly.

Definition 7. Define “{ν}(x−1) = / ≥ κ” to be the statement “in the initial ν + (x − 1) arrivals,

the number of CBs is equal to/ no less than κ+ (x− 1)”.

Definition 8. Let {ix}(x−1)
B = i(x − 1) + j − 1 denote the number of cases to place the initial

ix+ (x− 1) many buyers, such that {x− 1} = x− 1, {ix}(x−1) = i(x− 1) + j − 1 and {nx}(x−1) ≥

n(x − 1) for all n < i. Then, b(i, j) = Cases({ix}(x−1)
B = i(x − 1) + j − 1); and b(i, j) = 0 if

j ≥ i+ 1.

It is left to readers to check that, by Definition 8, Bx can be generated recursively as follows:

b(1, 1) = Cx−1
x = x, b(1, 2) = Cx

x = 1; b(i+ 1, 1) =
∑x

s=1C
s
xb(i, s) and b(i+ 1, j) =

∑x
s=0C

s
xb(i, j −

1 + s) for all i ≥ 1, the same as defined in Definition 2.

Lastly, we need to derive Cases(L̃ = l) for each l = (x − 1)(n − 1) + (m − 1). When n = 1,

l ∈ {0, 1, ..., x− 2}, and the required DB hit in the front is 1. There is only one way to place these

(l + 1) buyers: placing the DB as the (l + 1)th arrival, otherwise the cascade would have started

earlier. Therefore, for these l, Cases(L̃ = l) = 1 ∗ CTd−1
T−(l+1) = CTd−1

T−m .

When n = 2, l is in {x − 1, x, ..., 2x − 3}. Notice, as before, the necessary condition for L̃ = l

combined with the sufficient condition for L̃ ̸= l−1 reduces the later to an equality, {m}x−1 = m−1,

resulting in Cm−1
m = C1

m ways to place the initial l+2 buyers. Then Cases(L̃ = (x−1)+(m−1)) =

C1
m ∗ CTd−2

T−(x+m).

8Tables 4,5,6,7 are wide tables and are thus put at the end of this material for better display.
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When n ≥ 3, l = (x − 1)(n − 1) + (m − 1). Take l = (x − 1)(n − 1) (i.e., m = 1) as an

example. Conditions are {(n− 2)x+2}(x−1) = (n− 2)(x− 1), {(n− 2)x}(x−1) ≥ (n− 2)(x− 1), ...,

{x}(x−1) ≥ x−1 and {x−1} = x−1. Combine the first two we get {(n−2)x}(x−1) = (n−2)(x−1);

coupled with other conditions, it corresponds to b(n−2, 1). Therefore, Cases(L̃ = (x−1)(n−1)) =

b(n−2, 1)∗CTd−n
T−(x(n−1)+1). Analogously, we derive for otherm, Cases(L̃ = (x−1)(n−1)+(m−1)) =(∑m

s=1 b(n− 2, s)Cs
m

)
∗ CTd−n

T−(x(n−1)+m).

These expressions are the same as stated in Lemma 1 1(i).

When There Are Unproportionally Too Many CB

From the pledging threshold expressions in Table 4, n DBs can support at most n(x − 1) − 1

many CB losses. Since there are in total Td DBs, they can support up to ((x − 1)Td − 1) CB

losses. We are interested in deriving Prob(L̃ = l) for l ∈ {0, 1, 2, ..., T − Td − 1}.9 Therefore, if

T − Td − 1 ≤ (x− 1)Td − 1, the algorithm in Section covers all l ∈ {0, 1, ..., T − Td − 1}.

What if T − Td − 1 > (x − 1)Td − 1? Then, it is impossible to lose more than (x − 1)Td − 1

CBs, if not losing all of them, as Td DBs are not sufficient to reach the critical mass after the lth

CB loss and to start the pledging cascade. But it is still possible to lose all buyers, as the cascade

need not happen. These arguments are demonstrated in Lemma 1 1(ii) and 3.

Change of Pledging Rule Once n ≥ G− 1

Common buyers use n
t ≥ k as the pledging rule only when n+1 < G. If the buyer can complete

the campaign by herself, she would always pledge. However, this change of rule does not make

any difference if the cascade has already started after reaching the critical mass. It only makes a

difference before the critical mass is reached (before n
n+l+1 ≥ k), in which case the cascade will

happen earlier than when the critical mass is reached.10 That is, the DB hit takes the minimum

of the smallest n such that n
n+l+1 ≥ k, and G − 1. Also notice, as the critical mass is reached by

dedicated buyers, this is only possible if Td ≥ G.

[ Insert Table 5 here. ]

The last four rows of Table 5 represent the change of rule, since DB hit must be no more than

G − 1. First, notice at n = G − 1, two rules are equivalent. So, the fourth to last row is the

same as it is in Table 4. From the next row, only G − 1 DBs are required to start the cascade.

Write these l as l = (G− 1)(x− 1) + e, where e ∈ {0, 1, ...(T − Td − 1)− (G− 1)(x− 1)} is a new

9Prob(L̃ = T − Td) is simply calculated by Lemma 1 3., as the pledging cascade need not happen.
10This point reminds that the critical mass reflects both the percentage funded and the fraction elapsed time,

instead of the former alone.
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index represented by the underlined number in the column corresponding to m. The necessary and

sufficient conditions change accordingly.

Take l = (G − 1)(x − 1) as an example. The front (G − 1)(x − 1) CB losses and G − 1

DBs need to be placed nicely. Combining the necessary condition for L̃ = (G − 1)(x − 1) and

the sufficient condition for L̃ ̸= (G − 1)(x − 1) − 1, we have {(G − 2)x}(x−1) = (G − 2)(x − 1).

Other sufficient conditions are {x − 1} = x − 1 and {nx}(x−1) ≥ n(x − 1) for all n ≤ G − 3,

which correspond to the (G − 3)th row of Bx. Compare {(G − 2)x}(x−1) = (G − 2)(x − 1) and

{(G − 3)x}(x−1) ≥ (G − 3)(x − 1); the former has x more arrivals and x − 1 more CBs. Possible

placements are {(G−3)x}(x−1) = (G−3)(x−1), i.e., b(G−3, 1); {(G−3)x}(x−1) = (G−3)(x−1)+1,

i.e., b(G− 3, 2); {(G− 3)x}(x−1) = (G− 3)(x− 1) + 2, i.e., b(G− 3, 3) ... and place the rest of CBs

(x−1, x−2, x−3, ... respectively) in the additional x arrivals. In total, there are
∑x

s=1C
s
xb(G−3, s)

ways, thus Cases(L̃ = (G − 1)(x − 1)) =
(∑x

s=1C
s
xb(G − 3, s)

)
∗ C

Td−(G−1)
T−x(G−1). Similar arguments

apply to other e. The results are presented in Lemma 1 2(ii).

2.1.4 Lemma 2

Lemma 2. The matrix Bx and sequences amn defined in Section have the following expressions:

1. b(i, j) =
jCi−j+1

x(i+1)

i+1 when j ≤ i+ 1, and b(i, j) = 0 when j > i+ 1.

2. amn =
mCn−1

x(n−1)+(m−1)

(x−1)(n−1)+m , for all m ∈ {1, 2, ..., x− 1} and n ∈ {1, 2, 3, ...}.

2.1.5 Proof of Lemma 2

Proof for Matrix Bx

We want to show Bx defined recursively in Definition 2 has the following explicit form: b(i, j) =
jCi−j+1

x(i+1)

i+1 when j ≤ i+ 1 and b(i, j) = 0 when j ≥ i+ 2.

First, b(1, 1) =
C1

2x
2 = x, b(1, 2) =

2C0
2x
2 = 1, b(1, j) = 0 when j ≥ 3, the same as in Definition 2.

The first row of Bx is proved, and we use induction to complete the proof.

Assume the expression is true for the ith row of Bx.

By Bx’s definition, the first element of the next row is defined recursively by b(i + 1, 1) =∑x
s=1C

s
xb(i, s); plug in b(i, s), and b(i+1, 1) =

∑min(x,i+1)
s=1 Cs

x
sCi−s+1

xi+x

i+1 . Therefore, we want to show
Ci+1

x(i+2)

i+2 =
∑min(x,i+1)

s=1 Cs
x
sCi−s+1

xi+x

i+1 .

Notice:
Ci+1

x(i+2)

i+2 =
∑min(x,i+1)

s=1 Cs
x
sCi−s+1

xi+x

i+1

⇔
Ci+1

x(i+2)

i+2 = x
i+1

∑min(x,i+1)
s=1 Cs−1

x−1C
i−s+1
xi+x

⇔
Ci+1

x(i+2)

i+2 = x
i+1C

i
x(i+2)−1
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⇔ i+1
x(i+2)C

i+1
x(i+2) = Ci

x(i+2)−1

⇔ Ci
x(i+2)−1 = Ci

x(i+2)−1. Thus the equality is proved.

When 2 ≤ j ≤ i+ 1, b(i+ 1, j) is defined recursively to be

x∑
s=0

Cs
xb(i, j − 1 + s) =

min(x,i−j+2)∑
s=0

Cs
x

(j − 1 + s)Ci−j−s+2
xi+x

i+ 1
.

Therefore, we want to show

jCi−j+2
x(i+2)

i+ 2
=

min(x,i−j+2)∑
s=0

Cs
x

(j − 1 + s)Ci−j−s+2
xi+x

i+ 1
.

Notice:
jCi−j+2

x(i+2)

i+2 =
∑min(x,i−j+2)

s=0 Cs
x
(j−1+s)Ci−j−s+2

xi+x

i+1

⇔
jCi−j+2

x(i+2)

i+2 = 1
i+1(

∑min(x,i−j+2)
s=0 sCs

xC
i−j−s+2
xi+x + (j − 1)

∑min(x,i−j+2)
s=0 Cs

xC
i−j−s+2
xi+x

⇔
jCi−j+2

x(i+2)

i+2 = 1
i+1(x

∑min(x,i−j+2)
s=0 Cs−1

x−1C
i−j−s+2
xi+x + (j − 1)Cs

xC
i−j+2
x(i+2))

⇔ (i+ 1)jCi−j+2
x(i+2) = (i+ 2)((j − 1)Ci−j+2

x(i+2) + xCi−j−1
x(i+2)−1)

⇔ (i− j + 2)Ci−j+2
x(i+2) = (i+ 2)xCi−j−1

x(i+2)−1

⇔ (i−j+2)
x(i+2) C

i−j+2
x(i+2) = Ci−j−1

x(i+2)−1

⇔ Ci−j−1
x(i+2)−1 = Ci−j−1

x(i+2)−1. Thus the equality is proved.

For j ≥ i+2, by definition b(i+1, j) =
∑x

s=0C
s
xb(i, j− 1+ s). Notice j− 1+ s ≥ j− 1 ≥ i+2,

thus b(i, j − 1 + s) = 0 for all s ∈ {0, 1, ..., x}. Then b(i+ 1, j) = 0.

The proof is complete.

Proof for Sequences amn

In Definition 3, amn is defined via matrix Bx. We want to show amn =
mCn−1

x(n−1)+(m−1)

(x−1)(n−1)+m .

When n = 1, am1 =
mC0

m−1

m = 1 (C0
0 ≡ 0) for all m. When n = 2, am2 =

mC1
x+m−1

x+m−1 = m for all m.

The equality is proved for n = 1, 2.

When n ≥ 3, amn =
∑m

s=1C
s
mb(n−2, s) =

∑min(m,n−1)
s=1 Cs

m

sCn−s−1
x(n−1)

n−1 . With simple transformation,

amn = m
n−1

∑min(m,n−1)
s=1 Cs−1

m−1C
n−s−1
x(n−1) =

m
n−1C

n−2
x(n−1)+(m−1). Notice:

m

n− 1
Cn−2
x(n−1)+(m−1) =

mCn−1
x(n−1)+(m−1)

(x− 1)(n− 1) +m
.

Thus the equality is proved for n ≥ 3.

The proof is complete.
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2.1.6 Proposition 1

Proposition 1. Suppose k = 1
x for some x ∈ {2, 3, 4, ...}. For notation convenience, divide l by

(x− 1) and let (n− 1), (m− 1) denote the quotient and remainder.

1. When Td ≤ G− 1,

(i) For all l in 0 ≤ l ≤ min(Td(x− 1)− 1, T − Td − 1),

Prob(L̃ = l) =
mCn−1

x(n−1)+(m−1)C
Td−n
T−(x(n−1)+m)

((x− 1)(n− 1) +m)CTd
T

.

Notice:

(a) When n = 1,

Prob(L̃ = m− 1) =
CTd−1
T−m

CTd
T

≤ Td

T
(1− Td − 1

T − 1
)m−1.

(b) When n = 2,

Prob(L̃ = x+m− 2) =
mCTd−2

T−(x+m)

CTd
T

≤ (
Td

T
)2(1− Td − 2

T − 2
)x+m−2.

(c) When n ≥ 3,

Prob(L̃ = l) ≤ Td

nT
.

(ii) If Td(x− 1)− 1 < T − Td − 1, for those l in Td(x− 1) ≤ l ≤ T − Td − 1,

Prob(L̃ = l) = 0.

2. When Td ≥ G,

(i) For all l in l ≤ min((G− 1)(x− 1)− 1, T −Td− 1), Prob(L̃ = l) is derived the same as 1(i);

(ii) If (G− 1)(x− 1)− 1 < T − Td − 1, for those l in (G− 1)(x− 1) ≤ l ≤ T − Td − 1, rewrite l

as l = (G− 1)(x− 1) + e where e ∈ {0, 1, ...(T − Td − 1)− (G− 1)(x− 1)}, then

Prob(L̃ = l) =
(x+ e)CG−3

x(G−1)+e−1C
Td−(G−1)
T−(x(G−1)+e)

(G− 2)CTd
T

.

3. In both cases, Prob(L̃ = T − Td) = 1−
∑T−Td−1

l=0 Prob(L̃ = l).

Remark. This proposition is an extension of Proposition 1 presented in the main paper. The
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inequalities in 1(i) are meant to show that the p.m.f decreases very quickly (of approximately an

exponential form) as l increases and will not rise back to a significant level before L̃ = T − Td.

One may also be curious whether the scenario of Td ≥ G changes the two-spikes feature. As will be

shown in Section , the mass at L̃ = 0 is preserved, while the other mass is replaced by a small hump

before l reaches L̃ = T − Td. Naturally, with a large number of dedicated buyers, the probability of

losing all common buyers becomes small. However, notice all these cases have Td ≥ G, meaning

the dedicated buyers secure the success. Thus such campaigns will end up in the outlier of Figure 1

(more than 100% funded) in the main paper as blockbusters.

2.1.7 Proof of Proposition 1

Plug the expressions of amn and b(i, j) from Lemma 2 to Lemma 1, and one gets L̃’s p.m.f as stated

in Proposition 1.

Next, we will prove the three inequalities (a)(b)(c) in 1(i).

When n = 1, Prob(L̃ = m − 1) =
C

Td−1

T−m

C
Td
T

. Open the combinatorial numbers and rewrite the

right hand side:
C

Td−1

T−m

C
Td
T

= Td
T

∏m−2
s=0 (T−Td−s

T−1−s ). Because Td ≥ 1, we have T−Td−s
T−1−s ≤ T−Td

T−1 = 1− Td−1
T−1

for all s ≥ 0. Therefore,
C

Td−1

T−m

C
Td
T

≤ Td
T (1− Td−1

T−1 )
m−1. Thus (a) is proved.

When n = 2, Prob(L̃ = x + m − 2) =
mC

Td−2

T−(x+m)

C
Td
T

. Open the combinatorial numbers and

rewrite the right hand side:
mC

Td−2

T−(x+m)

C
Td
T

= m(Td
T )(Td−1

T−1 )
∏x+m−3

s=0 (T−Td−s
T−2−s ). We have Td

T > Td−1
T−1 .

Because Td ≥ 2 (since n = 2), we have T−Td−s
T−2−s ≤ T−Td

T−2 = 1 − Td−2
T−2 for all s ≥ 0. Therefore,

mC
Td−2

T−(x+m)

C
Td
T

≤ m(Td
T )2(1− Td−2

T−2 )
x+m−2. Thus (b) is proved.

For any n ∈ {1, 2, 3, ...}, Prob(L̃ = l) =
mCn−1

x(n−1)+(m−1)
C

Td−n

T−(x(n−1)+m)

((x−1)(n−1)+m)C
Td
T

. Notice:

Cn−1
x(n−1)+(m−1)C

Td−n
T−(x(n−1)+m) < CTd−1

T−1 =
s∑

s=s

Cs
x(n−1)+(m−1)C

Td−1−s
T−(x(n−1)+m)

where s = max(0, (Td−1)−(T−(x(n−1)+m))) and s = min(Td−1, x(n−1)+(m−1)). Therefore,
mCn−1

x(n−1)+(m−1)
C

Td−n

T−(x(n−1)+m)

((x−1)(n−1)+m)C
Td
T

< m
((x−1)(n−1)+m)

C
Td−1

T−1

C
Td
T

= m
((x−1)(n−1)+m)(

Td
T ). Lastly, m

(x−1)(n−1)+m <

x−1
(x−1)(n−1)+x−1 = 1

n . Thus (c) is proved.
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S2.2: L̃’s Distribution for k = y−1
y

2.2.1 Lemma 3

Definition 9. Let Ay be a matrix with a typical entry a(i, j). Ay is defined recursively as follows.

For the first row, a(1, j) = C0
jy = 1 for all j. For the (i + 1)th row where i ≥ 1, a(i + 1, j) =∑min(jy,i)

s=1 Cs
jya(i+ 1− s, s) for all j.

Definition 10. Let bn be a sequence defined via Ay. b1 = 1. bn+1 =
∑min(y−1,n)

s=1 Cs
y−1a(n+1−s, s),

for all n ≥ 1.

Definition 11. Let Cy be a matrix with a typical entry c(i, j). Cy is defined recursively as follows.

For the first row, c(1, j) = Cj
y−1 for all 1 ≤ j ≤ y−1, and c(1, j) = 0 for all j ≥ y. For the (i+1)th

row where i ≥ 1, c(i+ 1, j) =
∑min(y,j)

s=0 Cs
yc(i, j + 1− s) for all j ≥ 1.

Lemma 3. Suppose k = y−1
y for some y ∈ {1, 2, 3, ...}. If y − 1 > Td, Prob(L̃ = T − Td) = 1.

Otherwise,

1. When Td ≤ G− 1

(i) For all l in 0 ≤ l ≤ min( Td
y−1 − 1, T − Td − 1),

Prob(L̃ = l) = bl+1

C
Td−(l+1)(y−1)
T−((l+1)y−1)

CTd
T

.

(ii) If Td
y−1 − 1 < T − Td − 1, for all l in Td

y−1 − 1 < l ≤ T − Td − 1, Prob(L̃ = l) = 0.

2. When Td ≥ G

(i) For all l in 0 ≤ l ≤ min(G−1
y−1 − 1, T − Td − 1), Prob(L̃ = l) is derived the same as 1(i).

(ii) If G−1
y−1 − 1 < T − Td − 1

(a) When y − 1 > G− 1,

Prob(L̃ = l) =
C l
G+l−2C

Td−(G−1)
T−(G+l−1)

CTd
T

.

(b) When y− 1 ≤ G− 1, let l̂ ≥ 0 be such that (l̂+1)(y− 1) ≤ G− 1 and (l̂+2)(y− 1) > G− 1.

For all l in l̂ < l ≤ T − Td − 1, rewrite l as l = l̂ + e, e ∈ {1, 2, ..., T − Td − 1− l̂}. Then,

Prob(L̃ = l̂ + e) =

[
ŝ∑

s=0

Cs
G−(y−1)(l̂+1)+e−2

c(l̂ + 1, e− s)

]
C

Td−(G−1)

T−(G+l̂+e−1)

CTd
T

where ŝ = min(G− (y − 1)(l̂ + 1) + e− 2, e− 1).
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3. In both cases, Prob(L̃ = T − Td) = 1−
∑T−Td−1

l=0 Prob(L̃ = l).

2.2.2 Proof of Lemma 3

An Example of y = 3

This proof is similar to that of Lemma 1. However, now that k takes a different form, the

pledging thresholds also have a different pattern as shown in Table 3. The necessary condition for

L̃ = l comes directly from the pledging threshold, and the sufficient condition for L̃ ̸= l comes

from its contrapositive statement. Similarly, conditions for L̃ = l include the necessary condition

for L̃ = l and the sufficient conditions for L̃ ̸= 0, 1, ..., l − 1. For instance, L̃ = 3 if and only if the

single-underlined 4 conditions are true.

l Pledging DB hit Necessary condition Sufficient condition

threshold for L̃ = l for L̃ ̸= l

0 2/3 2 {2} = 0 {2} ≥ 1

1 4/6 4 {5} = 1 {5} ≥ 2

2 6/9 6 {8} = 2 {8} ≥ 3

3 8/12 8 {11} = 3 {11} ≥ 4

4 10/15 10 {14} = 4 {14} ≥ 5
... ... ... ... ...

l − 1 (2l)/(3l) 2l {3l − 1} = l − 1 {3l − 1} ≥ l
l (2(l + 1))/(3(l + 1)) 2(l + 1) {3(l + 1)− 1} = l {3(l + 1)− 1} ≥ l + 1
... ... ... ... ...

Table 3: Conditions for L̃ = l, y = 3

For example, when l = 0, the first two arrivals must be (DB,DB) ({2} = 0), and the third

buyer facing n
t = 2

3 ≥ k = 2
3 will pledge and thus the pledging cascade starts. So, Prob(L̃ = 0) =

CTd−2
T−2 /CTd

T . Notice {2} ≥ 1 is sufficient for L̃ ̸= 0. When l = 1, the pledging threshold is 4/6, that

is, among the initial 5 arrivals there should be 1 CB and 4 DBs. Then, for L̃ = 1 we need to have

{5} = 1 and {2} ≥ 1, leading to {2} = 1. It means there must be 1 CB among the initial 2 arrivals,

and the third, fourth and fifth arrivals are all DBs. So, Prob(L̃ = 1) = (C1
2 ) ∗ (C

Td−4
T−5 /CTd

T ).

To take care of all the sufficient conditions for L̃ ̸= 0, 1, ..., l − 1, we need to similarly generate

some auxiliary matrix. There is more than one way to generate such matrices. At this point, a

matrix named Ay (corresponding to Definition 9) in generated. Later in the scenario of Td ≥ G,

another matrix named Cy (corresponding to Definition 11) will be utilized. The reason to have

two auxiliary matrices is: Ay has a neat explicit expression (as will be proved in the next lemma)

but it can not cater to Td ≥ G; Cy can take care of both scenarios but does not have an explicit

expression.

Now, we first define matrix Ay by the placing requirements, and then show it is the same
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as Definition 9. In Table 3, notice all pledging thresholds are multiples of 2
3 , and the sufficient

condition for L̃ ̸= l is always of the form {3(l + 1)− 1} ≥ l + 1.

Definition 12. Let a(1, j) = 1 for all j. When i ≥ 2, for a(i, j), consider (i− 1) groups of buyers.

The first group has 3j arrivals; and each of the following (i − 2) groups has 3 arrivals. Thus, it

contains 3j+3(i−2) arrivals in total. Then, a(i, j) represents the number of cases, such that there

are totally i− 1 CBs in the i− 1 groups, and for all n < i− 1, the initial n groups contain at least

n CBs.

With the number of arrivals in each group specified, an alternative way to describe the definition

is: the first group contains at least 1 CB ({3j} ≥ 1), the initial 2 groups contain at least 2 CBs

({3j + 3} ≥ 2), the initial 3 groups contain at least 3 CBs ({3j + 6} ≥ 3), ... the initial (i − 2)

groups contain at least (i − 2) CBs ({3j + 3(i − 3)} ≥ i − 2), and (i − 1) groups contain in total

(i− 1) CBs ({3j + 3(i− 2)} = i− 1).

For example, the second row of Ay corresponds to only 1 group, where 1 CB needs to be properly

placed. Consequently, a(2, 1) = Cases({3}=1) = C1
3 = 3. a(2, 2) = Cases({6}=1) = C1

6 = 6.

a(2, 3) = Cases({9}=1) = C1
9 = 9, and so forth.

The third row corresponds to 2 groups, where 2 CBs need to be properly placed. For a(3, 1),

both groups contain 3 arrivals, and there are two ways to place them by definition: 1 CB in the

first group and 1 CB in the second group; or 2 CBs in the first group. Notice after placing 1 (or

2) CB(s) in the first group, the problem is reduced to a one-group (or zero-group) problem, and

corresponds to the second (or first) row of Ay. That is, a(3, 1) = C1
3a(2, 1) + C2

3a(1, 2), recalling

a(1, j) = 1 for all j.

For a(3, 2), the first group contains 6 buyers and the second group contains 3 buyers. We can

have 1 CB in the first group and 1 CB in the second group; or 2 CBs in the first group. Thus,

a(3, 2) = C1
6a(2, 1) + C2

6a(1, 2). Similarly, a(3, 3) = C1
9a(2, 1) + C2

9a(1, 2).

For the fourth row, say a(4, 1), it contains 3 groups, each having 3 arrivals, and 3 CBs need to

be placed properly. If placing 1 CB in the first group, other conditions of a(4, 1) require “at least

1 CB in the second group, and in total 2 CBs in the second and third group”, which is exactly

the definition of a(3, 1). If placing 2 CBs in the first group, notice “at least 2 CBs in the initial

2 groups” is naturally satisfied, and the remaining requirements become “1 CB in the second and

third group combined”, which corresponds to a(2, 2) if we think of the second and third group, 3

buyers in each, as one group of 6 buyers. If placing 3 CBs in the first group, all requirements are

satisfied and a(1, 3) = 1 follows. Therefore, a(4, 1) = C1
3a(3, 1) + C2

3a(2, 2) + C3
3a(1, 3).
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Thus, Definition 12 leads to a recursive way to generate all entries of Ay. Consider a(i + 1, j)

with i groups of buyers. If placing 1 CB in the first group, the conditions on the following i − 1

groups, with 3 buyers in each, is the same as a(i, 1)’s definition. If placing 2 CBs in the first group,

“at least 2 CBs in the initial 2 groups” is naturally satisfied. Condition on the initial 3 groups then

becomes “at least 1 CB in the second and third group combined” or “at least 1 CB in the 6-buyer

group”, which, coupled with other conditions, correspond exactly to a(i− 1, 2). If placing 3 CBs in

the first group, “at least 2 CBs in the initial 2 groups” and “at least 3 CBs in the initial 3 groups”

are satisfied, and the remaining requirements are the same as a(i − 2, 3)’s definition, etc. That is

to say, Ay is formulated recursively as a(i + 1, j) =
∑min(3j,i)

s=1 Cs
3ja(i + 1 − s, s), where 3j is the

number of arrivals in the first group and s is the number of CBs placed in the first group. This

formula is the same as Definition 9.

Now we can connect Ay to Cases(L̃ = l). For L̃ = l, we need to place the front l CBs

and 2(l + 1) DBs nicely. Given in Table 3, the conditions include {3(l + 1)− 1} = l, {3l − 1} ≥ l,

{3(l−1)−1} ≥ l−1, ..., {5} ≥ 2 and {2} ≥ 1. Combining the first two conditions, we get {3l−1} = l.

For the initial two arrivals we need {2} ≥ 1, and starting from the third arrival, we have groups of

3 buyers in each. If {2} = 1, we need {3}2 ≥ 1, {6}2 ≥ 2, ..., {3(l− 1)}2 = l− 1, which corresponds

to a(l, 1). If {2} = 2, {3}2 ≥ 1 is satisfied, and we need {6}2 ≥ 1, {9}2 ≥ 2, ..., {3(l− 1)}2 = l− 1,

which corresponds to a(l − 1, 2). So, there are in total
∑min(2,i)

s=1 Cs
2a(l + 1 − s, s) = bl+1 ways

to place the front 3l + 2 buyers, by bn’s definition in Definition 10. It follows Prob(L̃ = l) =

bl+1 ∗ (C
Td−2(l+1)
T−(3(l+1)−1)/C

Td
T ) as in Lemma 3 1(i) with y = 3.

Analogue to General y

[ Insert Table 6 here. ]

As shown in Table 6, for l CB losses, (l+1)(y−1) DBs are needed. The sufficient and necessary

conditions for L̃ = l include {(l+1)y− 1} = l, {ly− 1} ≥ l, {(l− 1)y− 1} ≥ l− 1, ..., {2y− 1} ≥ 2

and {y − 1} ≥ 1. Similarly, we need to generate an auxiliary matrix Ay to get Cases(L̃ = l).

Let a(1, j) = 1 for all j. Starting from the second row, for a(i, j), consider (i− 1) groups. The

first group has jy arrivals, and each of the following (i − 2) groups has y arrivals. Then, a(i, j)

represents the number of cases such that—the first group contains at least 1 CB ({jy} ≥ 1); the

initial 2 groups contain at least 2 CBs ({jy + y} ≥ 2); the initial 3 groups contain at least 3 CBs

({jy+ 2y} ≥ 3), ..., the initial (i− 2) groups contain at least (i− 2) CBs ({jy+ (i− 3)y} ≥ i− 2),

and (i− 1) groups contain (i− 1) CBs in total ({jy + (i− 2)y} = i− 1).

Analogously, if placing s CBs in the first group, “at least ŝ CBs in the initial ŝ groups” is
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naturally satisfied for all ŝ ≤ s, and readers can check that the remaining conditions correspond to

a(i+ 1− s, s) by its definition. Likewise, a(i+ 1, j) =
∑min(jy,i)

s=1 Cs
jya(i+ 1− s, s).

Lastly, the conditions for L̃ = l include {ly − 1} = l, {(l − 1)y − 1} ≥ l − 1, ..., {3y − 1} ≥ 3,

{2y − 1} ≥ 2 and {y − 1} ≥ 1. Consider {y − 1} ≥ 1. If {y − 1} = 1, then we need {y}y−1 ≥ 1,

{2y}y−1 ≥ 2, ..., {(l − 1)y}y−1 ≥ l − 1, the same as a(l, 1)’s definition. If {y − 1} = 2, it calls for

a(l − 1, 2), etc. In total, there are
∑min(y−1,i)

s=1 Cs
y−1a(l + 1 − s, s) = bl+1 ways to place the front

buyers. It follows that Prob(L̃ = l) = bl+1 ∗ (C
Td−(l+1)(y−1)
T−((l+1)y−1) /C

Td
T ) as in Lemma 3 1(i).

When There Are Unproportionally Too Many CB

To support l CB losses, (l + 1)(y − 1) DBs are needed to form the critical mass. There are in

total Td DBs. When l = T−Td−1, if the number of needed DBs, (T−Td)(y−1) is no more than Td,

the foregoing algorithm covers all l as needed. Otherwise, for those l such that (l+ 1)(y − 1) > Td

and l ≤ T − Td − 1, Prob(L̃ = l) = 0. These arguments are reflected in Lemma 3 1(ii) and 3.

Change of Pledging Rule Once n ≥ G− 1

Let l̂ be the largest CB loss that can be supported by no more than (G − 1) DBs, that is,

(l̂ + 1)(y − 1) ≤ G − 1 and (l̂ + 2)(y − 1) > G − 1. Similar to Section , for l ≤ l̂, the foregoing

algorithm still works. As the cascade starts for sure after the (G− 1)th DB’s pledge, the column of

DB hit in Table 6 needs to be modified for all l ≥ l̂ + 1. These are reflected in the last 4 rows of

Table 7.

[ Insert Table 7 here. ]

First, an extreme case needs to be considered. When y − 1 > G − 1, the critical mass k is so

close to 1 that it can not be reached before the actual target is achieved. In this case, l̂ is not

well defined, because even for l̂ = 0, (l̂ + 1)(y − 1) ≤ G − 1 is not true. Readers can check that,

in this situation, conditions for L̃ = l are {G + l − 1} = l, {G + l − 2} ≥ l, {G + l − 3} ≥ l − 1,

..., and {G − 1} ≥ 1, all of which can be reduced to a single condition {G + l − 2} = l, because

{G+ l− 2} = l ⇒ {G+ l− 3} ≥ l− 1 ... ⇒ {G− 1} ≥ 1. Then Cases({G+ l− 2} = l) = C l
G+l−2,

and consequently Prob(L̃ = l) = C l
G+l−2 ∗ (C

Td−(G−1)
T−(G+l−1)/C

Td
T ).

Now suppose y− 1 ≤ G− 1, l̂ is well defined. For all l ≥ l̂+1, (G− 1) DBs are needed to start

the cascade. Write these l as l = l̂ + e, e ∈ {1, 2, ..., T − Td − 1− l̂}. The conditions for L̃ = l̂ + e

include all the single-underlined conditions in Table 7.

First, notice {G+ l̂+e−1} = l̂+e and {G+ l̂+e−2} ≥ l̂+e combined imply {G+ l̂+e−2} = l̂+e.

Second, {G + l̂ + e − 2} = l̂ + e ⇒ {G + l̂ + e − 3} ≥ l̂ + e − 1 ⇒ {G + l̂ + e − 4} ≥ l̂ + e − 2

⇒ ... ⇒ {G + l̂} ≥ l̂ + 2. Third, for e ≥ 2, conditions include {y − 1} ≥ 1, {2y − 1} ≥ 2, ...,
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{(l̂+1)y−1} ≥ l̂+1, and {G+ l̂+e−2} = l̂+e. The last two conditions do not have an increment

of y arrivals, meaning matrix Ay cannot be utilized.

For the purpose, we define matrix Cy (similar to matrix Bx) with a typical entry c(i, j).

Cases(L̃) directly relates to matrix Cy, but the latter does not have an explicit expression as

Bx or Ay, meaning it can only be approached numerically.

The first row of Cy corresponds to {y − 1} ≥ 1. Define c(1, 1) = Cases({y − 1} = 1) = C1
y−1;

c(1, 2) = Cases({y − 1} = 2) = C2
y−1; ...; c(1, y − 1) = Cases({y − 1} = y − 1) = Cy−1

y−1 . And

c(1, j) = 0 for all j ≥ y.

The second row of Cy corresponds to {2y − 1} ≥ 2, with {y − 1} ≥ 1 implicitly required.

Write it as {2y − 1}C ≥ 2, meaning the second condition is implicitly required. Similar to Bx,

c(2, 1) = Cases({2y − 1}C = 2) = C0
yc(1, 2) + C1

yc(1, 1). The first term means placing 2 CB in the

initial y − 1 arrivals, i.e. c(1, 2), leaving 0 CB in the following y arrivals; the second term means

placing 1 CB in the initial y − 1 arrivals, i.e. c(1, 1), leaving 1 CB in the following y arrivals.

Likewise, c(2, 2) = Cases({2y − 1}C = 3) = C0
yc(1, 3) + C1

yc(1, 2) + C2
yc(1, 1), and so forth.

For the (i+1)th row, c(i+1, j) represents the number of cases such that {(i+1)y−1} = i+1+j−1,

with {sy − 1} ≥ s implicitly required for all 0 < s ≤ i; or as just defined, c(i+ 1, j) = Cases({(i+

1)y−1}C = i+1+ j−1). Likewise, the recursive formula is c(i+1, j) =
∑min(y,j)

s=0 Cs
yc(i, j+1− s),

the same as Definition 11.

Lastly, relate Cy to the conditions for L̃ = l̂ + e. When e = 1, conditions include {y − 1} ≥ 1,

{2y− 1} ≥ 2, ..., {(l̂+1)y− 1} = l̂+1, the same as c(l̂+1, 1)’s definition. When e ≥ 2, conditions

include {y−1} ≥ 1, {2y−1} ≥ 2, ..., {(l̂+1)y−1} ≥ l̂+1 and {G+ l̂+e−2} = l̂+e; all but the last

correspond to the (l̂+1)th row of matrix Cy. If {(l̂+1)y−1} = l̂+1, e−1 CBs are left to be placed

in the additional G− (y− 1)(l̂+1)+ e− 2 arrivals; if {(l̂+1)y− 1} = l̂+2, e− 2 CB are left to be

placed in the additional G−(y−1)(l̂+1)+e−2 arrivals, and so forth. Then Cases({G+ l̂+e−2}C =

l̂ + e) =
∑ŝ

s=0C
s
G−(y−1)(l̂+1)+e−2

c(l̂ + 1, e − s) where ŝ = min(G − (y − 1)(l̂ + 1) + e − 2, e − 1).

Lemma 3 2. is thus proved.

The proof is complete.

2.2.3 Lemma 4

Lemma 4. The matrix Ay and sequence bn defined in Section have the following expressions:

1. a(i, j) =
jCi−1

(i+j−1)y

i+j−1 for all i ≥ 1 and j ≥ 1.

2. bn =
Cn−1

yn−2

n for all n ≥ 1.
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2.2.4 Proof of Lemma 4

Proof for Matrix Ay

We want to show Ay defined recursively in Definition 9 has the following explicit form: a(i, j) =
jCi−1

(i+j−1)y

i+j−1 for all i ≥ 1 and j ≥ 1.

First, a(1, j) = j
j = 1, the same as Definition 9. Thus the first row of Ay is proved. We will use

induction to complete the proof.

Assume the expression is true for the initial i rows of Ay. Then by definition, a(i + 1, j) =∑min(jy,i)
s=1 Cs

jya(i + 1 − s, s). Plug in a(i + 1 − s, s), a(i + 1, j) =
∑min(jy,i)

s=1 Cs
jy

sCi−s
iy

i . Notice

sCs
jy = (jy)Cs−1

jy−1. So a(i + 1, j) = jy
i

∑min(jy,i)
s=1 Cs−1

jy−1C
i−s
iy = jy

i C
i−1
(i+j)y−1. Therefore, we need to

show
jCi

(i+j)y

i+j = jy
i C

i−1
(i+j)y−1.

Notice:
jCi

(i+j)y

i+j = jy
i C

i−1
(i+j)y−1

⇔ i
(i+j)yC

i
(i+j)y = Ci−1

(i+j)y−1

⇔ Ci−1
(i+j)y−1 = Ci−1

(i+j)y−1.

Thus the equality is proved.

Proof for Sequence bn

In Definition 10, bn is defined via matrix Ay. We want to show bn =
Cn−1

yn−2

n for all n ≥ 1.

When n = 1, the equivalence is trivial.

By definition 10, bn+1 =
∑min(y−1,n)

s=1 Cs
y−1a(n+ 1− s, s) for n ≥ 1. Plug a(i, j) in, and we get

bn+1 =
∑min(y−1,n)

s=1 Cs
y−1

sCn−s
ny

n . Notice sCs
y−1 = (y−1)Cs−1

y−2. So bn+1 =
y−1
n

∑min(y−1,n)
s=1 Cs−1

y−2C
n−s
ny =

y−1
n Cn−1

(n+1)y−2. Therefore we need to show
Cn

(n+1)y−2

n+1 = y−1
n Cn−1

(n+1)y−2.

Notice
Cn

(n+1)y−2

n+1 = y−1
n Cn−1

(n+1)y−2

⇔ n
(n+1)(y−1)C

n
(n+1)y−2 = Cn−1

(n+1)y−2

⇔ Cn−1
(n+1)y−2 = Cn−1

(n+1)y−2.

Thus the equality is proved and the proof is complete.

2.2.5 Proposition 2

Proposition 2. Suppose k = y−1
y for some y ∈ {1, 2, 3, ...}, and consider the scenario when

Td ≤ G− 1. If y − 1 > Td, Prob(L̃ = T − Td) = 1. Otherwise,

1. L̃’s p.m.f:
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(i) For all l in 0 ≤ l ≤ min( Td
y−1 − 1, T − Td − 1),

Prob(L̃ = l) =
C l
(l+1)y−2C

Td−(l+1)(y−1)
T−((l+1)y−1)

(l + 1)CTd
T

.

(ii) If Td
y−1 − 1 < T − Td − 1, for all l in Td

y−1 − 1 < l ≤ T − Td − 1, Prob(L̃ = l) = 0.

(iii) Prob(L̃ = T − Td) = 1−
∑T−Td−1

l=0 Prob(L̃ = l).

2. Notice:

(i) When l = 0:

Prob(L̃ = 0) =
C

Td−(y−1)
T−(y−1)

CTd
T

≈ (
Td

T
)(y−1)

(ii) The p.m.f is almost always decreasing as l increases:

(a) For those l such that (l + 2)(y − 1) ≤ Td − 2 and l + 1 ≤ T − Td − 2,

Prob(L̃ = l + 1)

Prob(L̃ = l)
< 1.

(b) If both l1 = T−Td−2 and (l1+1) have a non-zero probability mass, that is, (T−Td)(y−1) ≤

Td,
Prob(L̃ = l1 + 1)

Prob(L̃ = l1)
<

3

e
.

(c) If such l2 exists that l2 + 1 ≤ T − Td − 1 and (l2 + 2)(y − 1) = Td − 1,

Prob(L̃ = l2 + 1)

Prob(L̃ = l2)
< (

3y

2
− 1).

(d) If such l3 exists that l3 + 1 ≤ T − Td − 1 and (l3 + 2)(y − 1) = Td,

Prob(L̃ = l3 + 1)

Prob(L̃ = l3)
<

1

e
(
3y

2
− 1).

Remark. This proposition is an extension of Proposition of the main paper. Only the scenario of

Td ≤ G − 1 is included, following immediately from Lemma 3 and 4. The scenario of Td ≥ G is

fully characterized in Lemma 3 and is thus omitted.

The new contents are 2(i)(ii), aiming to characterize the p.m.f in more details. 2(i) gives

an approximation of Prob(L̃ = 0), clearly increasing in the proportion of dedicated buyers Td
T

and decreasing in the critical mass k = y−1
y . Next, 2(ii) assures the monotonicity of L̃’s p.m.f
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with small exceptions on the boundary in (b)(c)(d), enhancing the two-spikes pattern: If the p.m.f

quickly and monotonically decreases to a negligible level, it naturally has two big masses around

L̃ = 0 and T − Td.

2.2.6 Proof of Proposition 2

Plug the expressions of bn from Lemma 4 to Lemma 3, and 1(i) follows immediately. 1(ii)(iii) are

identical to Lemma 3 1(ii) and 3. Next, we will prove the inequalities given in 2.

Plug l = 0 to the expression in 1(i), and one gets Prob(L̃ = 0) = C
Td−(y−1)
T−(y−1) /C

Td
T . Open the

combinatorial number and rewrite the expression. C
Td−(y−1)
T−(y−1) /C

Td
T =

∏y−2
s=0

Td−s
T−s . Notice

Td−s
T−s ≈ Td

T

for some small s ≥ 0, so Prob(L̃ = 0) ≈ (Td
T )(y−1) if y is small compared to T and Td. Thus 2(i) is

proved.

As for 2(ii), let A(l) = C l
(l+1)y−2/(l + 1) and B(l) = C

Td−(l+1)(y−1)
T−((l+1)y−1) /C

Td
T , then Prob(L̃ = l) =

A(l)B(l) from 1(i). When l ≥ 1, A(l+1)
A(l) =

[∏(l+1)
s=2

(l+1)y+y−s
(l+1)y−s

]
(y− 1). Notice (l+1)y+y−s

(l+1)y−s > 1, and it

decreases in l for all s. So A(l+1)
A(l) reaches its maximum at l = 1, A(2)

A(1) =
3y
2 − 1, for all l ≥ 1. When

l = 0, A(1)
A(0) = y − 1 < 3y

2 − 1. Therefore, for all l ≥ 0, the maximum of A(l+1)
A(l) is (3y2 − 1).

Now examine B(l+1)
B(l) . Let nl ≡ (l + 1)(y − 1). It follows B(l+1)

B(l) = C
Td−(nl+y−1)
T−(nl+y+l) /CTd−nl

T−(nl+l). The

first combinatorial number implies T − (nl + y + l) ≥ Td − (nl + y − 1), so T − Td − l ≥ 1 is an

underlying condition. Additionally, B(l+1) = C
Td−(nl+y−1)
T−(nl+y+l) by definition, so Td−(nl+y−1) ≥ 0 is

also underlying condition, that is, nl ≤ Td − y+ 1. We need to discuss B(l+1)
B(l) when T − Td − l ≥ 1

and nl ≤ Td − y + 1.

If T − Td − l = 1, that is, l + 1 = T − Td. We are not interested in B(T−Td)
B(T−Td−1) , since there is a

spike at T − Td. So, consider T − Td − l ≥ 2.

When nl ≤ Td − y − 1, it implies Td − (nl + y − 1) ≥ 2 ⇒ T − (nl + l + y) ≥ T − Td − l + 1; so

B(l + 1) and B(l) can be opened and written as

B(l + 1)

B(l)
=

(T−(nl+l+y))(T−(nl+l+y)−1)(T−(nl+l+y)−2)...(T−Td−l)
(Td−(nl+y−1))!

(T−(nl+l))(T−(nl+l)−1)(T−(nl+l)−2)...(T−Td−l+1)
(Td−nl)!

.

Cancel identical terms to get

B(l + 1)

B(l)
= (

T − Td − l

T − nl − l
)

[
(

Td − nl

T − nl − l − 1
)(

Td − nl − 1

Td − nl − l − 2
)...(

Td − nl − (y − 2)

T − nl − l − (y − 1)
)

]
= (

T − Td − l

T − nl − l
)

y−2∏
s=0

(
Td − nl − s

T − nl − l − 1− s
).

Notice Td−nl−s
T−nl−l−1−s = 1− T−Td−l−1

T−nl−l−1−s ≤ 1 because T − Td − l ≥ 1 and T − nl − l − 1− s > 0. So,
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Td−nl−s
T−nl−l−1−s ≤ Td−nl

T−nl−l−1 = 1− T−Td−l−1
T−nl−l−1 for all s ≥ 0. Then we get

B(l + 1)

B(l)
≤ (

T − Td − l

T − nl − l
)(1− T − Td − l − 1

T − nl − l − 1
)y−1

< (
T − Td − l

T − nl − l − 1
)(1− T − Td − l − 1

T − nl − l − 1
)y−1

= (
T − Td − l − 1

T − nl − l − 1
)(1− T − Td − l − 1

T − nl − l − 1
)y−1 + (

1

T − nl − l − 1
)(1− T − Td − l − 1

T − nl − l − 1
)y−1.

Notice (T−Td−l−1
T−nl−l−1 )(1 − T−Td−l−1

T−nl−l−1 )
y−1 ≤ max

a∈[0,1]
a(1 − a)y−1 = (y−1)y−1

yy . Since T − Td − l ≥ 2, it

implies T −Td − l− 1 ≥ 1, and so we have B(l+1)
B(l) < (1+ 1

T−Td−l−1)(
T−Td−l−1
T−nl−l−1 )(1−

T−Td−l−1
T−nl−l−1 )

y−1 ≤

(1 + 1
T−Td−l−1)

(y−1)y−1

yy .

So, when nl ≤ Td − y − 1, we have B(l+1)
B(l) < (1 + 1

T−Td−l−1)
(y−1)y−1

yy .

When nl = Td − y, B(l+1)
B(l) = (T−Td−l)y!

(T−Td−l+y)(T−Td−l+y−1)(T−Td−l+y−2)...(T−Td−l+1) =

( T−Td−l
T−Td−l+y )(

∏y
s=2

s
T−Td−l−1+s). Since T − Td − l− 1 ≥ 0, we have s

T−Td−l−1+s ≤ 1. Since y ≥ 2, we

have T−Td−l
T−Td−l+y < 1. Therefore, B(l+1)

B(l) < 1.

When nl = Td − y + 1, B(l+1)
B(l) = (y−1)!

(T−Td−l+y−1)(T−Td−l+y−2)...(T−Td−l+1) =∏y−1
s=1

s
T−Td−l+s ≤ ( (y−1)

T−Td−l+y−1)
y−1. Since T − Td − l − 1 ≥ 0, B(l+1)

B(l) < (y−1
y )y−1.

Hitherto, the part of B(l) is complete.

Lastly, combine A(l) and B(l): Prob(L̃=l+1)

Prob(L̃=l)
= (A(l+1)

A(l) )(B(l+1)
B(l) ).

(1) If nl ≤ Td − y − 1 and T − Td − l − 1 ≥ 1, Prob(L̃=l+1)

Prob(L̃=l)
< (3y2 − 1)(1 + 1

T−Td−l−1)
(y−1)y−1

yy =

(32 − 1
y )(1 + 1

T−Td−l−1)(
y−1
y )y−1. Notice (y−1

y )y−1 = (1 − 1
y )

y−1 is increasing in y, and lim
y→+∞

(1 −

1
y )

y−1 = lim
y→+∞

(1− 1
y )

y y
y−1 = 1

e . So, (
y−1
y )y−1 < 1

e ; it follows
Prob(L̃=l+1)

Prob(L̃=l)
< 3

2e(1 +
1

T−Td−l−1).

(a) When T − Td − l − 1 = 1, Prob(L̃=l+1)

Prob(L̃=l)
< 3

e .

(b) When T − Td − l − 1 ≥ 2, Prob(L̃=l+1)

Prob(L̃=l)
< 9

4e < 1.

(2) If nl = Td − y, Prob(L̃=l+1)

Prob(L̃=l)
< (3y2 − 1).

(3) If nl = Td − y + 1, Prob(L̃=l+1)

Prob(L̃=l)
< (3y2 − 1)(y−1

y )y−1 < (3y2 − 1)1e .

The proof is complete.

S2.3: L̃’s Distribution for Arbitrary k ∈ (0, 1)

The way to numerically derive L̃’s p.m.f for arbitrary k ∈ (0, 1) is similar to k ∈ K by following

the four steps: (i) finding the pledging threshold, (ii) deriving necessary condition for L̃ = l, (iii)

deriving sufficient conditions for L̃ ̸= l, (iv) using combinatorics to calculate the number of cases for

L̃ = l. The difference is that for arbitrary k, there is no pattern in the pledging thresholds, thus no

general formula for the necessary conditions. Hence the process must be performed recursively by
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computer programs. Nevertheless, it is easily seen that for two k’s of similar values, their pledging

threshold, thus conditions, should be similar as well, leading to similar L̃’s p.m.f’s. Therefore, the

two regular-form k’s serve as a good approximation for arbitrary k’s.

Another way to get L̃’s distribution is by simulation. One can fix T and Td, randomly draw a

(T, Td)-combination arriving order from the CTd
T many possibilities, check the behavioral rule n

t ≥ k

from the first arrival to the last, and determine how many pledges are received (equivalently, L̃)

for this arriving order. Repeat the process for many times, and by the law of large number, the

resulting histogram of L̃ is approximately L̃’s theoretical distribution.

S2.4: Bounded Rationality in the Behavioral Rule

Assume buyers believe the average percentage of duration needed to raise 1% of the target (AveDur)

follows a uniform distribution over a range (0,Ω), where Ω stands for the longest needed time (or

the lowest speed) to raise 1% of the target. Ω is not observable, but the current average speed

prior to the buyer’s arrival, t/T
n/G , delivers information about Ω. For instance, if t/T

n/G is believed

to be the mean of the random variable AveDur, then under the uniform distribution assumption,

Ω = 2 t/T
n/G . More generally, Ω could be a multiple of the observed speed, Ω = c t/T

n/G where c is a

constant. The campaign succeeds if less than 1% of its duration is needed to raise 1% of the target.

So the success probability is Prob(AveDur ≤ 1) = 1
Ω = 1

c
n/G
t/T , a linear function of the campaign’s

funding progress.

S2.5: Proof of Lemma 3

Recall Õ is the random arriving order with a typical element o ∈ O, and O is the set of all

possible arriving orders. The size of O is ∥ O ∥= CTd
T . Notice, given T and Td, there exists a

mapping between Õ and L̃ wherein the arriving order uniquely pins down the number of . Define

fi : O → {0, 1, ..., T − Td}, i ∈ {A,B}, to be such mappings for campaigns A and B.

Now, for some o ∈ O, suppose fB(o) = l for some l ≤ T −Td−1 (the case of l = T −Td needs to

be singled out because the pledging cascade does not happen in the case). Since campaign B loses

only l buyers, for the (l + n+ 1)th buyer, it must be n
l+n+1 ≥ kB. Campaign B’s pledging cascade

starts at the (l + n + 1)th arrival. As n
l+n+1 ≥ kB ≥ kA, campaign A’s pledging cascade either

starts now or has already started. So, fA(o) ≤ l = fB(o), which holds for all o ∈ O. Therefore,

f−1
B ({0, 1, ..., l}) ⊆ f−1

A ({0, 1, ..., l}). We know that Prob(L̃i ≤ l) =∥ f−1
i ({0, 1, ..., l}) ∥ /CTd

T , where

∥ · ∥ is the cardinality of the set. So, Prob(L̃B ≤ l) ≤ Prob(L̃A ≤ l) for all l ≤ T − Td − 1. When

l = T − Td, Prob(L̃B ≤ l) = Prob(L̃A ≤ l) = 1. Thus the FOSD is proved.
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However, because n and t must be integers, even if kA < kB (strictly less than), campaigns A

and B’s L̃’s p.m.f may still be the same. For example, let T = 50, Td = 10, kA = 1
300 and kB = 1

200 ,

so l ≤ T − Td = 40. As kA and kB are both extremely small, 1 DB suffices to reach the critical

mass for both. Specifically, both campaigns have the same pledging thresholds “1
2 ,

1
3 , ...,

1
41” for

l = 0, 1, ..., 39 by definition. Therefore, L̃A and L̃B should be the same. For a strict improvement

over L̃’s distribution, there must exist feasible l and n, 0 ≤ l ≤ T − Td and n ≤ Td such that

kB > n
n+l+1 ≥ kA, which forms a real difference in the pledging thresholds.

S2.6: Clarifications for Maximization (6)

First, G∗ must be an integer lying in [K,T ]. Notice the problem can be rewritten as

max
G∈[ K

1−c
,T ]

F (T − ⌈G⌉ | k) s.t. k = k(G) =
rh

( G
K+cG − 1)

,

where ⌈·⌉ is the ceil function that takes the smallest integer greater than the argument, because

L̃ ≤ T − G is equivalent to L̃ ≤ T − ⌈G⌉ if L̃ is an integer. Then for any non-integer G, the

campaign’s success probability can be increased by raising G towards ⌈G⌉, which reduces k but

keeps T − ⌈G⌉ the same. So G∗ must be an integer. This then leads to a finite feasible set of G

between [K,T ], so a solution to (6) exists.

S2.7: Proof of Proposition 6

First, let L̃, L̃′ and L̃′′ denote the random variable of in the scenarios of (a) no support, (b) early

support and (c) deadline support. For three scenarios, the critical masses k = rh
( G
K+cG

−1)
are the

same. The campaign’s ex-ante success probabilities are written as

(a) Ps =
∑T−G

l=0 Prob(L̃ = l),

(b) P ′
s =

∑min(T−G+n0,T−Td)
l=0 Prob(L̃′ = l), and

(c) P ′′
s =

∑min(T−G+n0,T−Td)
l=0 Prob(L̃′′ = l).

Note the range of l. With n0 ≥ 1 many unconditional pledges, the campaign succeeds when

Ñ + n0 ≥ G or T − L̃ + n0 ≥ G. Also, it must be L̃ ≤ T − Td, which is readily satisfied in (a) as

G > Td. So, in (b) and (c), 0 ≤ l ≤ min(T −G+ n0, T − Td).

Now, since we assumed late supports come after the last buyer arrives, buyers’ pledging dy-

namics remains the same, and thus L̃ and L̃′′ are the same. Therefore, Ps =
∑T−G

l=0 Prob(L̃ = l) ≤∑min(T−G+n0,T−Td)
l=0 Prob(L̃ = l) =

∑min(T−G+n0,T−Td)
l=0 Prob(L̃′′ = l) = P ′′

s . That is, Ps ≤ P ′′
s . The

inequality holds strictly if Prob(L̃ = T − G + 1) ̸= 0, which is often the case as the optimal goal
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G∗ is close to T , meaning L̃ has not decreased to a negligible level at l = T −G∗ + 1.

As for L̃′, notice the first buyer would observe n0 pledges at her arrival. The derivation of

the pledging thresholds with which L̃’s p.m.f is calculated needs to be modified accordingly. If

we think the first buyer arrives at t = n0 + 1, the pledging threshold for some l becomes n′

n′+l+1

such that n′+n0
n′+n0+l+1 ≥ k with the smallest such n′, as the initial n0 arrivals are fixed to pledge;

if we think the first buyer arrives at t = 1 (friends and family swarm in at t = 0), it becomes

n′

n′+l+1 such that n′+n0
n′+l+1 ≥ k with the smallest such n′, as the initial n0 pledges did not cost

any time. Both cases give a lower n′

n′+l+1 compared to that of L̃′′, which is defined as n
n+l+1

such that n
n+l+1 ≥ k with the smallest n. Particularly, when l = 0, n′

n′+1 is strictly lower than

n
n+1 because n′ < n by definition (the proof is left out). Therefore, with strictly lower pledging

thresholds, L̃′ is strictly first-order stochastically dominated by L̃′′ by Lemma 3 and its proof. Thus

P ′
s = Prob(L̃′ ≤ min(T −G+ n0, T − Td)) > Prob(L̃′′ ≤ min(T −G+ n0, T − Td)) = P ′′

s . That is,

P ′
s > P ′′

s . The proof is complete.

S2.8: Proof of Proposition 7

Condition (1) assures the pledging cascade does not stop when the first late bird arrives. To

see it, suppose in the early stage the campaign had lost l early birds before the cascade started.

Other early birds including the dedicated buyers and common buyers who arrived after k1 had

been achieved, in total G1 many of them, pledged at the price p1. When the (G1 + l + 1)th buyer

arrives, the price rises to p2, and if she is a common type, she will compare n
t = G1

G1+l+1 against

k2. Considering those l such that l ≤ T − G, condition (1) assures G1
G1+l+1 ≥ k2, thus the first

late bird would follow the cascade and pledge, in which case the campaign will eventually succeed

as T − l ≥ G. So, condition (1) guarantees k2 does not stop the cascade once it starts with k1.

Condition (2), on the other hand, assures the k1 is a strict improvement over k, since if two critical

masses are too close their L̃’s p.m.f’s may be the same. The proof is complete.

S3: Graphs and Examples

Figure S4 L̃’s p.m.f is invariant to scale (of T and Td) but depends on their ratio (Td
T ).

Figure S5 More examples for L̃ p.m.f’s with different k in the scenario Td < G (i.e., dedicated

buyers cannot secure the target alone).

Figure S6 More examples for L̃ p.m.f’s with different k in the scenario Td ≥ G.
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Figure S7 L̃ p.m.f’s for arbitrary k ∈ (0, 1), k /∈ K.

Figure S8 F (L | k) for different L and Td
T , being a discontinuous, decreasing function of k.

Figure S9 The Maximization (6) is approximately convex in G.

Tables 4, 5, 6, 7 included in the end.
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Figure S4: Invariant to scale

Note: This figure displays L̃’s p.m.f with varying scales. In the top (bottom) figure, Td
T

= 0.1 (0.9) and k = 1
3
( 14
15
),

while T takes the value of 100, 300, 500 and 1000. Notice the p.m.f is almost invariant to the scale except the tail’s
location T − Td.
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Figure S5: Varying k when Td < G

Note: This figure displays L̃’s p.m.f with varying critical masses when Td < G, the focal scenario of the main paper.
In both figures, T = 300 and T = 90, while k takes the value of 1

4
, 1

3
, 1

2
, 2

3
and 3

4
. Because the p.m.f decreases

quickly to a negligible level as l increases, there tend to be two probability spikes around L̃ = 0 and T − Td. Also,
as the critical mass decreases, L̃’s p.m.f becomes better in the sense that the campaign tends to lose less buyers.
Consequently, when k is small (e.g., k = 1

4
), the spike at L̃ = T − Td may not exist—Campaigns with a very low

critical mass are likely to capture almost all buyers.
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Figure S6: Varying k when Td ≥ G

Note: This figure displays L̃’s p.m.f with varying critical masses when Td ≥ G, a scenario not considered by the
paper. The p.m.f is identical to that of Td < G when l is not too big by definition. For bigger l, the p.m.f forms a
hump before l reaches its tail. The intuition is: If the number of dedicated buyers is sufficient to reach the goal even
before the critical mass is reached, the probability at the tail moves to the left, as such campaigns are unlikely to lose
all common buyers given the abundance of dedicated buyers. However, this scenario is rare, since all such campaigns
will succeed for sure and thus fall in the outlier (more than 100% funded) as blockbusters. For example, if k = 1

2
and

T = 300, Td = 240, G = 200, this campaign has 80% probability to get 150% funded. The number becomes more
dramatic if the market demand T turns out to be very big for hot campaigns.
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Figure S7: Arbitrary k when Td < G

Note: This figure displays L̃’s p.m.f when k ̸= 1
x
and k ̸= y−1

y
. The two-spikes property is clearly retained.
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Figure S8: F (L | k) for different L and Td
T , corresponding to Lemma 4 in main paper

Note: We simulate F (L | k) for Td
T

= 0.1, 0.2, ..., 0.9 and k = 0.10, 0.11, ..., 0.90, all exhibiting similar properties. The
actual F is discontinuous in k but connected by line (seen as the kinks) in this graph.
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Figure S9: The maximization is approximately convex in G

Note: The figures also show that higher c lowers the overall success probability, i.e., the F (·) function shifts down.
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