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Abstract

We study the symmetric volunteer’s dilemma with binary actions and cost sharing,
where the volunteering cost is split equally among volunteers. In the one-shot game,
all pure-strategy Nash equilibria involve a single volunteer, while Pareto optimality
allows any non-zero number. In the infinitely repeated game, all Pareto optima can
be sustained in a subgame-perfect Nash equilibrium based on a grim-trigger strat-
egy: trivially under undiscounted payoffs, and provided the discount factor exceeds a
threshold under discounted payoffs. This threshold is non-monotonic in the number
of volunteers; it is zero with one volunteer, highest with two, and decreases with both
more volunteers beyond two and more players. Thus, the scope for tacit cooperation is
universal with one volunteer, minimal with two, then improving as more join in, all the
way to universal again only in the limit with more and more players and volunteers.
Considering both equity and scope for cooperation as criteria, the grand coalition as
volunteers emerges as the best cooperation scenario.
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1 Introduction

The volunteer’s dilemma (Diekmann, 1985) is an n-player, complete-information, simultaneous-
move game dealing with the provision of a public good. Each individual chooses a binary
action, to volunteer (incurring cost ¢) or to stand down, knowing that the provision of the
public good only requires (at least) one player to volunteer, whereas all players receive a
benefit of b upon provision. Therefore, more volunteers add cost but do not generate extra
benefit. Because b > ¢, a lone individual would have the incentive to volunteer were he the
only player in the game. But with n players, one might expect other players to volunteer,
and such an incentive to free ride often results in socially inefficient outcomes.

Despite its simplicity, a diversity of political, military, economic, and biological settings
may be seen as good fits for the volunteer’s dilemma (VD). Well-known examples include
the infamous story of Kitty Genovese who was murdered without any of many eye witnesses
even calling the police (as in Manning, Levine, and Collins, 2007), alarm sounding in animal
societies warning of approaching predators (Archetti, 2011), preemptive strikes to neutralize
potential raiders (KKonrad, 2024), and those discussed in Konrad and Morath (2021). Other
examples put forth recently include dismantling piracy groups in international waters and
whistle-blowing in private or government organizations (Amir, Machowska, and Tian, 2025).

Based on Diekmann’s classical VD game, Weesie and Franzen (1998) introduced cost
sharing, where the costs of providing the public good are split evenly among all volunteers.!
Cost sharing arises in many volunteer dilemma settings, such as in counter-piracy coalitions
and in corporate or political whistleblowing (see Amir, Machowska, and Tian, 2025, for more
discussion). In the former case, each country in the coalition incurs a fraction of total naval
costs, as it may patrol only the area of the danger zone closest to its coastline.” As for
whistleblowing, the main cost incurred by any whistleblower is the risk of retaliation by the

accused, but as more individuals join to report the wrongdoing, retaliation to any single

L Amir, Machowska, and Tian (2025) considered cost synergies where the cost-sharing function (of an
exponential form) exhibits increasing returns to scale as the number of volunteers increases. As in Weesie
and Franzen (1998), Amir, Machowska, and Tian (2025) assume a one-shot interaction.

2An example of such coalitions is the Contact Group on Piracy off the Coast of Somalia. See https:
//2009-2017 .state.gov/t/pm/rls/fs/2016/255175 . htm.
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person becomes less and less likely.”

This paper studies the VD game with equal cost sharing (Weesie and Franzen, 1998) in
an infinitely repeated setting. In Weesie and Franzen (1998), players only interact once and
each player’s action is unobservable by other players.” However, many VD settings (with or
without cost sharing) involve repeated interaction among the players. For instance, in many
animal societies, alarm calling to warn group members of approaching predators is part of
daily behavior. Countries in a counter-piracy coalition face repeated interaction. Since the
coalition itself may not have any effective coercive power over its members, members might
choose to renege on their commitments to the group. In such settings, repeated interaction
may mitigate free riding and strengthen cooperation, as players can tacitly coordinate on
turn taking, contributing in some periods with the expectation of free riding in others.

In the one-shot VD game, all pure-strategy Nash equilibria (PSNE) involve a single
volunteer and all single-volunteer outcomes are Pareto optimal. While cost sharing does
not change PSNE relative to the original VD game, it does substantially enlarge the set of
Pareto optima to consist of all scenarios where the public good is provided. This is due to
the total cost being evenly split among the volunteers and thus invariant to their number.

We first consider the undiscounted repeated VD game. In line with the usual focus for
this class of games, the full set of Nash equilibrium payoffs is directly identified using the
Folk Theorem. The key observation is that the individually rational level of each player
coincides with the PSNE of the one-shot game in which that player is the sole contributor.

For the discounted VD game, we characterize the scope for tacit cooperation on every
Pareto optimum — that is, every possible volunteering coalition with £ = 1 all the way to
k = n players. All players participate in equity-motivated rotations in being members of

this coalition.” Cooperation is to be sustained with the threat of permanent reversion by

3In the same vein, Psst is a recently launched nonprofit platform designed to “collectivize” whistleblowing.
See https://time.com/7208911/psst-whistleblower-collective.

4Closely related is the dynamic waiting game of Bliss and Nalebuff (1984), wherein the action of vol-
unteering is observable, and each player decides when to volunteer, conditional on no one having done so
yet. Common examples of the dynamic waiting VD include stopping a noise violation in a quiet study zone,
rescuing a drowning person, confronting a perpetrator at a crime scene, etc.

5By exogenously fixing the turn-taking protocol between members of the volunteering coalition, we avoid
otherwise likely coordination failures in playing according to equilibrium predictions. In the one-shot game,
the most likely coordination failure is to end up with no volunteers, as illustrated by the Kitty Genovese
story. Such failure remains a likely outcome even in the repeated version of the game.
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all non-deviating players to not volunteering if any player deviates from the cooperation
path, i.e., with the grim-trigger strategy. This threat forces the deviator to play as the lone
volunteer in all subsequent periods following her deviation.

We find that the only volunteering coalition size that can sustain universal cooperation
(i.e., for all discount factors) is the singleton coalition (i.e., K = 1). For coalitions with more
than one volunteer, cooperation is only sustainable for sufficiently large discount factors, and
the more volunteers in the coalition, the higher the resulting scope for cooperation. This
is because cost sharing lowers the individual cost a player must incur in each period when
assigned to volunteer, and the effect is stronger the larger the coalition. At the same time,
the punishment payoff is independent of the coalition size. Hence, the larger the coalition
size, the lower the player’s incentive to deviate from the cooperative path. In the same
vein, with a fixed coalition size, the scope for cooperation also increases with the number of
players, since the cumulative individual cost along the cooperative path decreases when each
player has to volunteer less frequently. However, as the number of players goes to infinity,
only the grand volunteering coalition (i.e., &k = n) can achieve universal cooperation (aside
from the singleton coalition). Moreover, the grand coalition is the only one that ensures full
equity, as all players bear identical costs every period.

A feature of interest of the repeated cost-sharing VD game is that if the Pareto optimum
sequence of outcomes can be supported as a Nash equilibrium, the same sequence can also be
supported as a subgame-perfect Nash equilibrium. This is because the individually rational
level of each player coincides with the PSNE of the one-shot game in which that player is the
sole contributor. Thus, the threat of reversion to the deviator’s individually rational level
amounts to repeated play of one of the Nash equilibria of the one-shot game, which means
that the punishment path is itself an equilibrium path. Subgame perfection thus implies
that the trigger strategies are based on credible threats and, hence, that the resulting tacit
cooperation is relatively plausible.

It is worth noting that, besides leading to the emergence of tacit cooperation, a repeated
game setup enjoys the ancillary benefit of allowing a more equitable distribution of the
costly volunteer role. This equity-motivated intertemporal rotation serves as a substitute for

transfers, which are usually not meaningful in our binary setting. While this is not part of



the usual motivation for considering repeated games, in the present setting, it is a welcome
remedy to the extreme inequity inherent in the PSNEs of the one-shot game.’

Due to its binary choice structure, the volunteer’s dilemma is arguably the simplest model
in the broader literature on voluntary public good provision. In many settings, provision is
a continuous variable and depends not on a single contribution but on richer aggregation
rules, such as total donations (Bergstrom, Blume, and Varian, 1986), weakest-link or best-
shot scenarios (Hirshleifer, 1983), or threshold requirements on the number of contributors
(Palfrey and Rosenthal, 1984). In contrast, this paper focuses on the case in which players
face binary choices and a single volunteer suffices for full provision.

Other studies have extended Diekmann (1985) in various ways, including a volunteer
timing game with asymmetric costs (Weesie, 1993) or incomplete information (Weesie, 1994).
More recently, Shi (2025) introduced hyperbolic discounting into a dynamic volunteering
setup, and Konrad (2025) studied how partitioning volunteers into teams in a one-shot game
affects social welfare. The equal cost-sharing VD is related to the snowdrift (hawk-dove)
game (Sugden, 2004), which is widely used to analyze evolutionary cooperation in biology
and ecology (e.g., Gore, Youk, and Van Oudenaarden, 2009; Hauert and Doebeli, 2004).

There is also an experimental strand of literature dedicated to the original VD game.
Kloosterman and Mago (2023) consider symmetric and asymmetric repeated VD games
(with no cost sharing) and explore the emergence of turn taking and coordination on the
PSNE of the two-player VD game and find substantial support for the theoretical predictions
on this game. Leo (2017) has a similar setting but with privately known costs and assigned
but tradable intertemporal duties between the two players. These two experimental studies
also stress the importance and real-life relevance of turn taking as a natural protocol for
equity /reciprocity. On the other hand, several studies report little support for the PSNE
predictions of the game (or one of its variants with possible delays) as well as significant indi-
vidual heterogeneity in observed volunteer rates (e.g., Otsubo and Rapoport, 2008; Goeree,
Holt, and Smith, 2017).

The remaining part of this paper is organized as follows. Section 2 introduces the one-

6Repetition with turn taking is advocated as a way to remedy inequity in other settings where a planner
finds it socially optimal to treat symmetric firms in a discriminatory manner, e.g., Salant and Shaffer (1999).



shot volunteer’s dilemma with equal cost sharing and characterizes its pure-strategy Nash
equilibria and Pareto-optimal outcomes. Section 3 examines the infinitely repeated game
with undiscounted payoffs and shows how the Folk Theorem applies in this setting. Section 4
studies the repeated game with discounted payoffs, deriving the conditions under which each
Pareto-optimal coalition can be sustained and highlighting the comparative statics of the
discount factor thresholds. This is followed by a general intuitive discussion of the scope of

the results in Section 5. Section 6 concludes.

2 The one-shot game

In this section, we describe the one-shot VD game with equal cost sharing of Weesie and
Franzen (1998) and its pure-strategy Nash equilibria (henceforth, PSNE). We also charac-

terize the set of its Pareto optima.

2.1 The game and its PSNE

Consider an n-player game (n > 2) wherein each player i chooses between volunteering
(a* =V) or not (a* = N) to produce a public good or to accomplish a designated task — the
two interpretations we are going to use interchangeably. If at least one person volunteers,
each player gets benefit b > 0. In contrast to the standard VD game (Diekmann, 1985),
the production process for the public good allows for equal cost sharing. Specifically, with
a total of k volunteers, each volunteer incurs the cost ¢/k > 0. Thus, as more volunteers
come forward, the individual cost of each volunteer falls, while the benefit to all players
remains constant. The idea is that the full task in question requires the same overall cost to
be performed as in the classical VD game, but the volunteers may engage in task-sharing or
otherwise accomplish the task in joint work in a way that lowers the individual cost to each
of them equally. There is no cost to any player who chooses not to volunteer, and no benefit

to any player if the public good is not produced (i.e., in the case of no volunteers). In sum,



the payoff to player 7 is

(

b—c/k, ifa'=Vand |{j:a/ =V,j#i}|=Fk—1,
X'= 4, if @ = N and o/ = V for some j # i,

0, otherwise.

\

Assuming b > ¢ guarantees that a lone player would always choose to produce the good.
The game is thus a classical symmetric anti-coordination game with binary actions.”

It is easy to verify that, just as in the classical model, there are n PSNE, each of which
features one player as volunteer and the other (n — 1) players as free riders.

More precisely, the set of all PSNE is (Weesie and Franzen, 1998)

Due to the symmetry of the game, since all PSNE differ only in the identity of the sole
volunteer, we may consider them as an equivalence class and refer to this class as the unique

equilibrium.

2.2 The Pareto optima

In order to characterize the set of utilitarian Pareto optima, we first define the social welfare

function. For k£ > 0 volunteers, the social welfare is

0, if k=0,
nb—k%:nb—c, it k> 1.
Since W is independent of k£ for £ > 1 and lower for £k = 0, every choice of £ > 1 is

optimal, and hence the solution set is {1,2,...,n}: every non-zero number of volunteers is

socially optimal.®

7As such, this game is one of strategic substitutes, or equivalently a submodular game. It is well known
that symmetric submodular games may possess only asymmetric PSNEs. For sufficient conditions on prim-
itives leading to these properties for general symmetric games, see e.g., Amir, Garcia, and Knauff (2010).

81t is easy to see that there are no other (non-utilitarian) Pareto optima. Even if the social planner places



Proposition 1. In the one-shot VD with equal cost sharing, there are n distinct (equivalence

classes of ) Pareto-optimal outcomes, each involving 1, 2, ..., or n volunteers.

In other words, each equivalence class is defined by the number of volunteers involved,
and every two elements of each class differ only in the identity of the volunteers involved.

Thus, for the cost-sharing VD game, the PSNE is Pareto optimal, but all other outcomes
with any level of volunteering are also Pareto optimal. In other words, the set of Pareto
optima is the entire set of possible outcomes of the game, excluding only the outcome with
zero volunteers.

This is a highly uncommon outcome for any game, and in particular for one dealing with
public good provision: As long as the public good is supplied, any outcome is Pareto optimal.
The intuition behind this unusual feature is that it is a consequence of the conjunction of
invariant benefit and equal cost sharing, i.e., the feature that total cost remains constant as

the number of volunteers varies.

3 The undiscounted repeated game

In this section, we consider the infinitely repeated version of the game and determine its
Nash equilibrium outcomes when rewards are not discounted. As is well known for such
repeated games, the Folk Theorem applies neatly and in exact fashion.

For the undiscounted repeated game, the payoff is the long-run average one-stage payoft.
Since the regular limit may fail to exist, the payoff of player ¢ is formally defined as

1
lim inf — Z X7,
=0

T—o00 Tt

where X7 is player i’s payoff in period t = 0,1,2,....

unequal weights on different players, this does not create any new Pareto-optimal outcome beyond those with
at least one volunteer. Pareto optimality does not allow trade-offs between persons: an outcome can only
be Pareto optimal if no one can be made better off without someone else being made worse off. This means
that an outcome with no volunteers remains inefficient even if the social planner places unequal weights on
different individuals: each is better off if one player volunteers, even the volunteer herself. Conversely, once
the public good is provided, changing the number or identity of volunteers will necessarily make at least one
player worse off: Any shift in who contributes will lower the cost burden for some but raise it for others.



The Folk Theorem for repeated games with undiscounted payoffs states that the set of
all Nash equilibrium payoff profiles coincides with the set of all feasible and individually
rational payoff profiles. In the rest of this section, we characterize each of these two sets for
the VD game with equal cost sharing.

The set of all feasible payoff profiles of a game is defined as the convex hull of all the
pure strategy outcomes of the game. For the present game, this set is the convex hull of the

origin and all the n points where the single volunteer gets b — ¢ and all the rest get b, i.e.,

F =conv{(0,0,0,...,0),(b—c¢,b,b,...,b),(b,b—c,b,...,b),...,(bbb,....b—c)}.

Outcomes with & > 2 volunteers are already in this set, as they can be represented as a
mixture of outcomes with a single volunteer.

The individually rational (henceforth, IR) level, also known as the maxmin level, of a
player is defined as the payoff that the player can ensure herself in the worst-case scenario
in the game — that is, when all other players act so as to minimize her payoff. For our game,
the worst-case scenario occurs when all other players do not contribute, thus forcing said
player to provide the good alone, thereby forsaking any cost sharing and obtaining a payoft
of b — ¢. This simple observation is worth noting as a separate result for future use, as it

plays a central role in the equilibrium analysis of the repeated game with discounting.

Proposition 2. In the one-shot VD with equal cost sharing, the outcome that delivers the

IR level of a player coincides with the PSNE in which that player is the sole volunteer.

The property that the IR level of a player coincides with her payoff in a Nash equilibrium
is satisfied by a number of different games arising in economic applications, including the
prisoner’s dilemma, Bertrand competition with homogeneous products (e.g., Tirole, 1988),
and the crime game studied in Amir, Bose, Pal, and Topolyan (2025). This strong and
somewhat unusual property defines a class of games that has been studied systematically by
Pruzhansky (2011).

Proposition 2 implies that the joint IR vector is (b — ¢,b —¢,...,b — ¢). The set of IR



payoffs contains all the payoffs that weakly dominate it:

IR = {(z1,29,...,2,) €ER" | x; > b—cforall i}.

Therefore, by the Folk Theorem, we get the following result.

Proposition 3. In the undiscounted repeated VD with equal cost sharing, the set of all Nash
equilibrium payoff profiles is
E=FnNnIR.

The two sets F' and IR and their intersection F are depicted in Figure 1 for the special
case of two players (n = 2), with the set F being the triangle.
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Figure 1: The set of Nash equilibrium payoff profiles (F) when n = 2

In line with the typical application of the Folk Theorem for undiscounted payoffs, the
focus of the present analysis is on sustainable equilibrium payoffs, and not on their associated
strategies. This will change in the case of the discounted repeated game, again in conformity
with standard practice.

The analysis of the undiscounted case is useful as a benchmark to understand the maximal
extent of cooperation in the long-run version of the game. However, in light of the fact that
anything that takes place in finite time is irrelevant to the long-run welfare of the players,
this is not a realistic approach to tacit cooperation in repeated games in economics. We next

consider the more realistic case of discounted payoffs.

10



4 The discounted repeated game

In this section, we study the infinitely repeated version of the VD game with discounted
rewards and determine the extent to which each of the n distinct Pareto-optimal outcomes
(distinguished by the number of volunteers) is sustainable as equilibrium outcome. We evalu-
ate sustainability using IR-level (minmax) threats implemented via grim-trigger punishments
— that is, after any deviation, the deviator is held forever to her IR payoff. By Proposition 2,
such threats can be implemented via the PSNE in which the deviator is the sole volunteer:
any deviation by any player in any period would be met by permanent reversion to not vol-
unteering in every subsequent period by all other players. Throughout the paper, we refer
to the resulting equilibrium outcomes as “tacit cooperation”.

Since the punishment path amounts to repeated play of one of the PSNE of the one-shot
game, the punishment strategy profile constitutes a Nash equilibrium in the corresponding
continuation subgame. Therefore, the resulting equilibrium for the full repeated game is
subgame perfect.

For the discounted repeated game, the total payoff of player 7 is defined as

>
t=0

where 6 € (0,1) is the discount factor (assumed common to all the players).

Each of the n equivalence classes of Pareto-optimal outcomes, described in Proposition 1,
has a fixed size for the coalition of volunteers. The associated cooperative path will keep this
size fixed but allow its composition to vary from period to period as all the players in the
game take turns in being members of this coalition according to an exogenously fixed order.
For convenience, we shall refer to the group of volunteers in each period as “the volunteering
coalition” | even though only its size is fixed while its composition varies in periodic fashion.

When the size of the volunteering coalition is less than n, our chosen specification of
the cooperation path — that is, the exogenously fixed order in which players take turns to
volunteer — reflects considerations of equity, focality, realism and ease of implementation.

We do not make any claims of uniqueness.

11



4.1 The Pareto optimum with one volunteer

In this subsection, we focus on the sustainability of any of the n Pareto-optimal outcomes
with a single volunteer (distinguished by the identity of the volunteer).

Along the cooperation path, players are selected in some prescribed order for each of
them to volunteer once in the first n periods (from period 0 to period n — 1), after which
this same contribution sequence is to be repeated indefinitely. This simple turn-taking
protocol introduces novel non-stationarity and (equity-motivated) periodicity features for the
cooperative path in a repeated game, whereas such paths typically specify the same Pareto-
optimal outcome for the duration of the cooperative path in common repeated games.’

The main result is that, the single-volunteer Pareto-optimal outcome is sustainable for
any discount factor. The reason is that the cooperation path amounts to a repeated play of
different PSNEs of the one-shot game. A key implication of this unusual property is that no
punishment is actually required for tacit cooperation and no player has an incentive to cheat
on the agreement even if § is arbitrarily close to 0. Therefore, an alternative possibility is to
let the punishment path coincide with the cooperation path — that is, after any deviation, the
predetermined turn-taking protocol remains intact and play proceeds as originally scheduled
along the cooperative path.

While the periodic nature of the order for volunteering does not play any role in the
equilibrium argument above, the assumption that this order is well-specified and commonly
known among the players is a key point. Absent such a specified order, one would expect

coordination failures if it is unclear who is volunteering in a given period.

Proposition 4. For the VD game with equal cost sharing, the Pareto-optimal outcome with
one volunteer is sustainable as a subgame-perfect Nash equilibrium of the discounted repeated

game for all § € (0,1). Moreover, this is true for any exogenous order of volunteers.

As we will see in the next subsections, the case of a single volunteer is the only one for

which no punishment is needed to produce a Pareto-optimal outcome and cooperation is

90me exception in repeated games of duopolistic collusion is Herings, Peeters, and Schinkel (2005) who
consider alternating monopoly instead of cartel as the cooperative path, and thus alternating one-stage
profits between 0 and monopoly profits for each firm.

12



sustainable for all discount factors. To the best of our knowledge, these special features do

not arise in other known applications of repeated games.

4.2 The Pareto optimum with n volunteers

In this subsection, we consider the other extreme case — the unique Pareto-optimal outcome
with n volunteers — for which the cooperation path calls for every player to volunteer in every
period. No additional protocol is needed here, as coordination failures are not an issue.

In any period, the continuation payoff for any player under maintained cooperation is

=N _b—c¢c/n
Z;aw—@ﬁu_ — (1)

If a player deviates from the cooperative path by not contributing in one period, and then
responds to the punishment by being the sole volunteer from the following period onwards,

the corresponding payoff is

= db—c) b—dc
b+ d'(b—c)=b+ = . (2)
- 1-6 1-9¢

Therefore, a player will choose to cooperate forever if the gains from cooperation (1) exceed

or equal the gains from deviation (2). It is easy to see that this condition reduces to

§> - £4.

S|

We have just proved the following result.

Proposition 5. For the VD game with equal cost sharing, the Pareto-optimal outcome with
n volunteers is sustainable as a Nash equilibrium of the discounted repeated game if and
only if 6 > 1/n. Moreover, this equilibrium is subgame perfect, with the punishment for any

deviator consisting of subsequent permanent play of the PSNE with her as the sole volunteer.

The set of discount factors [§,1) for which the Pareto-optimal outcome is sustainable
measures “the scope for tacit cooperation”. Proposition 5 states that § = 1/n, which is

interesting for several reasons.

13



First, as more players enter the game, the scope for cooperation widens. To see the
intuition, observe that the within-period incentive to deviate is captured by the deviation
gain b — (b — ¢/n) = ¢/n, while the disincentive to deviate corresponds to a post-deviation
punishment per-period loss of (b — ¢/n) — (b — ¢) = ¢ — ¢/n. As the number of players n
increases, a player’s incentive to deviate declines while the loss from doing so rises. There-
fore, these two effects reinforce each other in engendering a wider scope for tacit long-run
cooperation as more players enter the game.

Second, with sufficiently many players, the scope for cooperation becomes universal.
Intuitively, in the limit as n grows indefinitely, each player’s individual per-period cost goes
to zero, thus implying that the incentive to deviate converges to zero. At the same time,
the punishment loss rises with n. Hence, in the limit as n — oo, the critical discount
factor 9 converges to zero. This is tantamount to saying that, with a very large number of
participants in the repeated discounted VD game, threat-based cooperation with everyone
volunteering at every period is always sustainable as part of a subgame-perfect equilibrium.

Third, the scope for cooperation is independent of b and c. Intuitively, the benefit level b
does not affect incentives to cooperate because the punishment path also provides the public
good. The cost ¢ also drops out because it affects both the short-term gain from shirking
and the long-term loss from punishment in the same proportion.

Our next result shows that across all volunteering coalition sizes beyond 1, the grand

coalition gives the largest scope for cooperation.

Proposition 6. For the VD game with equal cost sharing, if a cooperation path in which
at least two players volunteer in some period is sustainable as a subgame-perfect Nash equi-
librium, then so is the cooperation path in which all players volunteer in all periods. More-
over, this cooperation path is the only one that achieves the maximal scope for cooperation

(6 > 1/n) among those paths in which at least two players volunteer in every period.

The result in Proposition 6 is very general as the set of cooperation paths we consider
only excludes the paths covered in Proposition 4 — that is, the paths in which only one
player volunteers in every period. Intuitively, the grand coalition minimizes the per-period

cost that each volunteer pays — and thus the benefit from shirking. At the same time, the

14



grim-trigger punishment payoff — the IR level — is the same for all cooperation paths. Thus,
including every player in the volunteering coalition yields the broadest scope for cooperation.
To shed further light on this mechanism, the next subsection considers cooperation paths
in which the size of the volunteering coalition remains constant, tracing how the scope for

cooperation evolves as the coalition size changes.

4.3 The Pareto optimum with %k volunteers

In this subsection, we restrict the coalition size to k = 2,...,n and see how the scope for
cooperation changes with k.

Consider first £ = 2. To specify the cooperation path along with its concomitant turn-
taking protocol, assume for simplicity that n is even and assume that players 1 and 2 con-
tribute in period 0, players 3 and 4 contribute in period 1, and so on until players n — 1 and
n contribute in period n/2 — 1. Then the same process is repeated starting in period n/2,
again and again, indefinitely.

Since player 1 receives the benefit b in every period and pays the cost ¢/2 only at periods

labeled nt/2, for t = 0,1, ..., she obtains

> > nt b &
P p 2 1-6 2(1-92)

In fact, this is the continuation payoff from the cooperative behavior for any player in any
period in which this player is called to volunteer.

If any player deviates, she will obtain the payoff in (2).

Therefore, all players will cooperate forever if (3) is greater than or equal to (2), which
simplifies to

36 —1—28271 > 0. (4)

One may verify that there is a unique discount factor, denoted by d,,, € (0,1), such that
(4) is satisfied with an equality sign and that cooperation is sustainable for any § > 4§, ,, (see
Appendix for a general proof of the k-volunteer case). We note, as quick verification, that

when n=2,0,, =1 /2, consistent with the case of n volunteers.

15



Now let us move to the general case of k£ volunteers. To specify the order of volunteers
along cooperation path, assume for simplicity that n is a multiple of k£ and the process is
analogous to the one described for two volunteers: players 1,2, ...,k contribute in period 0,
players k+1, ..., 2k contribute in period 1, and so on until players n—k+1, ..., n contribute
in period n/k — 1; then the same process is repeated starting in period n/k.

Along the cooperation path, in any period in which a player is called to volunteer, this

player obtains the continuation payoff of

o oo - b c
o — S s E = _ . (5)

If any player deviates, she will obtain (2).
Therefore, all players will cooperate forever if (5) is greater than or equal to (2), which
simplifies to

(k+1)0 —1— ks > 0. (6)

In the Appendix, we prove that (6) with an equality sign admits a unique real root
Opn € (0,1) for any given n > 2 and k € {2,...,n}, and that inequality (6) holds if and
only if 6 > 4, ,. Therefore, 9, ,, is the lowest bound on ¢ such that tacit cooperation with
the described order for volunteering is sustainable.

In contrast to the typical characterization of the threshold discount factor in repeated
games with stationary cooperative paths consisting of the same outcome in every period, the
periodicity of this path here leads to the need to sign a higher-order polynomial.

It is easy to see that if k& = n, then (6) is equivalent to 6 > 1/n, consistent with the case
of n volunteers.

Proposition 7 summarizes the above discussion.'”

Proposition 7. For the VD game with equal cost sharing, the Pareto optimum with k
volunteers in every period, for any k = 2,...,n such that n is a multiple of k, is sustainable

as a subgame-perfect equilibrium of the repeated game if 6 > 0y ,,, where oy ,, is defined as the

10Proposition 7 considers a specific order of volunteers along the cooperation path. Intuitively, this order is
optimal in the sense that no other order with the same number of volunteers per period yields a wider scope
for cooperation. The formal proof of this intuitive result is involved and is therefore omitted for brevity.

16



unique real root of

(k+1)0 —1—kokt =0 (7)
in the interval (0,1).

Proposition 8 provides the comparative statics of the threshold discount factor ¢y ,, as

an inverse measure of the ease of sustaining cooperation.

Proposition 8. For anyn > 2 and any k =2,...,n, let §, , be the unique real root of (7)
n (0,1). Then,

(i) for fized n, &, , is decreasing in k on {2,3,...,n} down tod,, = 1/n;
(ii) for fived k, 9y, is decreasing in n on {2,3,...} down to &, = 1/(k+1).

Hence, increasing either k or n increases the scope for cooperation.

.
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Figure 2: The scope for tacit cooperation is non-monotonic in &

Figure 2 illustrates point (i) of Proposition 8 which states that the scope for cooperation
expands with more volunteers (beyond 2). This result is consistent with Proposition 6 in
that the largest scope for cooperation is achieved with the grand coalition £ = n. Intuitively,
the larger the volunteering coalition size is, the smaller the incentive to deviate (in terms
of the individual cost saving ¢/k) is. Thus, while the incentive to deviate shrinks with the

coalition’s size, the punishment itself (equal to the full ¢) remains invariant with respect to
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it. The notable exception to this result is that the scope for cooperation is maximal (not
minimal) with a single volunteer — see Proposition 4. This follows from the total absence of
any incentive to deviate due to the agreement itself being a PSNE, as noted earlier. In this
case, a deviator has no one else in the coalition to rely on to volunteer, i.e., she only has
herself to cheat in this case.

Point (ii) of Proposition 8 states that increasing the number of players in the game
enhances the scope for cooperation. Intuitively, as the number of players increases, each
individual volunteers less frequently. A deviation then leads to a greater long-term loss: the
deviator forfeits more future periods in which she would have enjoyed the full cooperative
benefit b as a non-volunteer. Since d,,,, converges to 1/(k + 1) as n — oo, we conclude that
even with very large numbers of players, tacit cooperation with a fixed number of volunteers
(greater than 1) requires sufficiently strong discounting.

In the next section, we elaborate on the scope and implications of the results as well as on
their general relationship to the literature on public good provision and to other well-known

applications of repeated games.

5 General intuitive discussion of the results

In what follows, we step back from the formal analysis to draw out the broader intuition and
implications of our findings. We discuss the inter-temporal inequity along the cooperation
path, the trade-off between equity and the scope for cooperation, ease of implementation,
the credibility of threat-based punishments, the robustness of the equilibrium to the length
of the horizon, the role of perfect monitoring, and alternative ways tacit cooperation may

arise. We also contrast our results to some standard findings in the existing literature.

5.1 On the lack of equal treatment

Although the game we study is symmetric across players, the cooperation path with k£ < n
volunteers every period features inter-temporal inequity. Later volunteers are favored over
earlier ones over any provision cycle, due to discounting. Specifically, as long as cooperation

is maintained throughout, all players receive the same discounted total benefit, but the
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discounted total cost is higher for early volunteers.

Unless one relies on randomization (according to a uniform distribution) to assign con-
tributing periods to players, the inter-temporal inequity in the design of the cooperation
path and its concomitant distinct discounted payoffs cannot be circumvented (see Konrad,
2024, for a one-shot VD setting where a similar issue arises and randomization is adopted
to induce ex-ante equal treatment of players in terms of expected utility).!! Another op-
tion is to consider mixed-strategy Nash equilibrium instead to restore symmetry, but Pareto
optimality would then be forsaken.

In fact, besides allowing for tacit cooperation, a key advantage of invoking a repeated
game setup for the VD game is to reduce the otherwise extreme form of asymmetry inherent
in the PSNEs of the one-shot game. In particular, for the case of a single volunteer (Sec-

tion 4.1), this reduction of asymmetry is the only benefit of a repeated game setup, as tacit

cooperation is automatically present.

5.2 Equity versus scope for tacit cooperation

In this subsection, we compare the various equilibrium outcomes, distinguished by the size
of the volunteering coalition, according to the three broadly accepted criteria: the scope for
cooperation, equity, and ease of implementation.

The scenario with a single volunteer and turn taking achieves the maximal scope for
cooperation — being sustainable for all discount factors — but entails the greatest degree of
inter-temporal inequity among the scenarios we consider. While the scope for cooperation is
worst with two volunteers, this scope improves, along with its concomitant equity level, as
more volunteers are added. When the grand coalition is reached, it stands as the second-best
scenario in terms of the scope for cooperation. However, in contrast to the first-best scenario
with the singleton volunteering coalition, the grand coalition achieves perfect equality and
has the advantage of not requiring a complex turn-taking protocol. While the cooperation

scope of the grand coalition remains less than universal, it is close to maximal with modest

UThis asymmetry may be partly mitigated, e.g., by reversing the order of volunteering across players from
one set of n/k periods to the next, so that, say, players 1,...,k who are first in the first set of n/k periods
become last in the following set, and so on, indefinitely. However, while this and other possible re-orderings
of players’ moves would reduce the asymmetry, such steps would only amount to partial remedies.
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values of n, and, as the grand coalition grows very large, it gets arbitrarily close to universal.

Therefore, the singleton and grand volunteering coalitions emerge as the most attractive
options among all possible coalition sizes, with the final choice to be determined by the actual
value of the discount factor, the population size and the relative ease of implementation of

the relevant protocols. This is one of the main conclusions of the present analysis.

5.3 On the effects of group size on tacit cooperation

The conclusion that, as the number of players in the game grows, the scope for cooperation
enlarges stands against multiple well-known results on the difficulty of sustaining cooperation
and/or collusion in different repeated games as well as on the extent of free riding in various
static public good models.

We begin by contrasting our result with its counterpart for static models. Using a
standard model of (continuous) public good provision, Bergstrom, Blume, and Varian (1986)
have shown that free riding worsens with larger group size. This is a core robust result across
various public good models with continuous provision levels.

For the mixed-strategy Nash equilibrium of the classical VD game, Diekmann (1985) has
shown that the probability of volunteering decreases in group size at such a strong rate that
the overall probability of the public good being provided declines with group size. Weesie
and Franzen (1998) concluded that the same result continues to hold for the present (cost-
sharing) game.'” This has been suggested as a rationalization of the well-known bystander
effect (Darley and Latane, 1968) for which social psychologists offer other explanations.

The present analysis points to the opposite conclusion on the effect of group size than
much of the rich literature on public good models. This is not surprising since repetition is
generally known to engender more cooperation (i.e., remedy the free-riding problem) and a
larger group size dilutes the incentive to deviate from the cooperation path, as seen earlier.

In repeated oligopoly games, whether based on Bertrand or Cournot competition, collu-
sion or tacit cooperation between firms is well known to become more difficult to sustain (in

the sense that the threshold discount factor increases) with more firms, e.g., Tirole (1988).

12As to the PSNE, they are Pareto optimal and trivially invariant to group size for both versions of the
game, hence inadequate to address the key free-riding issue.
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This is due to the fact that adding more firms enhances the incentive to deviate (going from
1/n to the entirety of the market) while the punishment remains the same (zero profit).
An important exception is Matsumura and Matsushima (2005), who find a non-monotonic
relationship between the critical discount factor and the number of firms in a spatial price

discrimination model.

5.4 Subgame-perfect tacit cooperation

The fact that the Nash equilibrium that supports tacit cooperation is always subgame perfect
is worth emphasizing; it enhances the plausibility of the threat-based equilibrium since the
associated strategy relies on a credible threat.

Aside from the repeated VD game, the subgame-perfection property of a threat-based
equilibrium is also shared by a few of the most important repeated games as far as economic
applications are concerned. These include what are probably the two most-widely studied
specific repeated games: the prisoner’s dilemma and Bertrand competition with homoge-
neous products (Tirole, 1988). Interestingly, while the prisoner’s dilemma and Bertrand
competition are both characterized by some unusual structure in that they have (unique)
PSNEs in strictly dominant strategies and in weakly dominated strategies, respectively, as
a 2x2 coordination game, the VD game satisfies neither of these characteristics.

The singleton-coalition equilibrium in the repeated cost-sharing VD game combines two
features rarely observed together in repeated games. First, the Pareto-optimal cooperation
path consists of a repetition of PSNEs of the one-shot game. Second, the IR-inducing trigger-
strategy punishment, though chosen a priori to inflict the most harm to a deviator, is itself
a PSNE of the one-shot game (the worst of the PSNEs for the deviator) as well as a Pareto
optimum. As a result, whether cooperation continues indefinitely or a deviation takes place,

play always remains within the set of PSNEs of the stage game.

5.5 On the role of the length of the horizon

For many games of interest, the conclusion of tacit cooperation for sufficiently high discount

factors relies critically on the horizon being infinite. This is the case of the prisoner’s dilemma
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and of (homogeneous-good) Bertrand competition, among other examples. In contrast, in
the VD game, for the case of the equilibrium with the singleton volunteering coalition, the
same argument as given in the present paper would show that the same conclusion, namely
that the Pareto-optimal outcome is sustainable via the threat of no volunteering, also extends
to finitely repeated games.

Benoit and Krishna (1985) established a Folk Theorem for finite-horizon repeated games
with multiple PSNE for the one-shot game, but their general result requires sufficiently long
horizons. Their argument relies on alternating among different stage-game equilibria in the
tail of the game to punish deviations. This reasoning is directly relevant to the present
framework, as the cost-sharing VD game features multiple PSNE corresponding to different
sole volunteers, implying that cooperation paths with any fixed volunteering coalition size
k > 1 could, in principle, be sustained for long enough finite horizons. In contrast, the
singleton-coalition case goes further: it requires no such assumption on the horizon, since
both the cooperative outcome and the grim-trigger punishment are themselves PSNE of the
one-shot game. The underlying mechanism therefore differs in a significant way from the

analogous argument of Benoit and Krishna (1985).

5.6 On the role of perfect monitoring

In general, in repeated games, the issue of perfect monitoring of other players’ actions is
an important aspect that may critically affect the ability of players to punish deviators
and therefore influence the extent to which the Folk Theorem may apply. However, as our
analysis clearly indicates, for the VD game, the question of perfect monitoring is mostly
immaterial. Indeed, were a deviation to take place, every player in the volunteering coalition
would know with certainty that a deviation has taken place by observing a higher own cost
to volunteer, even if actions are unobservable.'® At least one player in the coalition needs
to inform outsiders (who are first unaware of the deviation as the public good was supplied
by the non-deviating coalition members) that a deviation has taken place, so the latter

participate in the punishment phase in the periods after the deviation.

13The discussion is restricted to the cases with more than one volunteer in the coalition, as the agreement
in the sole volunteer case is self-enforcing, as noted earlier.
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There is no need to identify specifically the deviator to trigger the simple punishment
of no volunteering in future periods following a single deviation. For the grand coalition,
the requirement on monitoring is the mildest because there are no outsiders and all players
can deduce that someone has deviated simply from observing their own stage payoff. Note
that although the very nature of the punishment scheme implicitly targets the deviator, her
identity remains hidden for other players if they only observe their own payoff.

Another uncommon feature of the repeated VD game with cost sharing is the observation
that a deviator in a given period does not directly cheat the non-volunteers, but only her
partners in that period’s volunteering coalition. Indeed, the only direct harm of a devia-
tion is to cause the cost of compliance for the other coalition members to increase. The
non-volunteers are not affected directly in the deviation period since the other designated
volunteers will continue to supply the public good. The non-volunteers are affected along
the punishment phase, if any.

All in all, the informational or observational requirements of the cooperation scheme are
quite minimal. This underlies another sense in which the threat mechanism here is very
robust and broadly applicable, in particular in many settings where the lack of observability
of others’ actions is a realistic feature.

It is also worth noting that the tacit cooperation scheme described here is very intuitive,
simple and so realistic that it sounds quite plausible as a way of dealing with free riders
across a large sample of distinct societies and environments, in a robust and reliable way

that eschews any critical role for a central authority in achieving the first-best outcome.

5.7 Other scenarios for tacit cooperation

In addition to the above turn-taking cooperation scenarios involving all players, there are
other possible protocols/scenarios to achieve the desired outcome of the public good being
supplied in every period. One option is to partition the set of players into an active subgroup
and an inactive subgroup. The latter’s members act as designated free riders, while the
members of the active subgroup re-enact the analogous steps as in the previous section,
using the same threat. It is easy to see that the scope for cooperation would then be

determined by the size of the active subgroup, rather than by the total number of players.
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In some tribal settings, being drafted into the active subgroup (of one or more persons)
might correspond to a punishment for some transgression of community rules, which is milder

than banishment or other harsh treatment.

6 Conclusion

This paper has investigated the extent of tacit cooperation in the infinitely repeated VD
game with equal cost sharing (Weesie and Franzen, 1998), both with undiscounted and with
discounted payoffs. We first observe that the main target of cooperation, i.e., the set of
Pareto optima of the one-shot game, is much larger than in the original VD game, consisting
of all n distinct (equivalence classes of) outcomes where the public good is provided. In
contrast, the set of Nash equilibria of the one-shot game remains the same as in the original
VD game.

For the undiscounted repeated game, we invoke the Folk Theorem directly, upon ob-
serving that the individually rational level of each player coincides with the PSNE of the
one-shot game in which that player is the sole contributor.

For the discounted repeated game, we characterize the scope for tacit cooperation on
every Pareto optimum, distinguished by the size £ = 1,...,n of the volunteering coalition,
sustained via the threat of permanent reversion by all non-deviating players to not volunteer-
ing in case of deviation. In all these scenarios, as this threat forces the deviator to act as the
lone volunteer in all periods following a deviation, the resulting outcome constitutes a PSNE
of the one-shot game (and at the same time achieves the deviator’s individually rational
payoff). Therefore, the resulting equilibria of the repeated game are subgame perfect.

We find that the only volunteering coalition size that can sustain universal cooperation
(i.e., for all discount factors) is the singleton coalition (i.e., k = 1), where equity-motivated
turn taking ensures that this role accrues to each player periodically. For coalitions with
more than one volunteer, cooperation is only sustainable for sufficiently large discount factors.
Overall, the scope for tacit cooperation is universal with one volunteer, minimal with two,
then monotonically improving with higher numbers of volunteers and/or players in the game.

For the grand coalition, the scope for cooperation asymptotically tends to universal again as
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more and more players join the game.

These comparative statics results form one of the main conclusions of this paper, a
complete reversal of the standard takeaway from multiple static public goods models, for
which a larger group size typically exacerbates free riding. A second key conclusion of this
paper is that, invoking both equity and scope for cooperation as selection criteria, we have
argued that the equilibrium with the grand volunteering coalition every period emerges as

the cooperation scenario with the best overall performance, particularly in large populations.
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A Appendix

This appendix contains the proofs of the results that were not given in the main text.

A.1 Proof of Proposition 2

The IR level of a player may be formally calculated as the value (a priori also allowing mixed
strategies) of the auxiliary two-by-two zero-sum game presented in Table 1. Player 2’s payoff
in this construction is a proxy for the behavior of the (n — 1) other players whose goal is to
minimize player 1’s payoff. Therefore, their composite action set is composed of n actions
specifying the number of volunteers from the coalition: N stands for no volunteer and action
V}. corresponds to k > 1 out of (n — 1) other players volunteering.

It turns out that the resulting zero-sum game is dominance solvable. Indeed, for player
2, all Vj are strictly dominated by strategy N, so they may be deleted in the first round.
Then strategy V' is dominated by N for player 1 and deleted in the second round. Since
mixed-strategy equilibria cannot put any mass on iteratively strictly dominated strategies,
the leftover outcome (V, V) is the unique Nash equilibrium in both pure and mixed strategies.

In this equilibrium, the value to player 1 is thus b — c.

Player 2
Vo Voo 1% N
Player 1
C C C C C C
1% b—;,—(b—g) b—nil,—(b—n71> b—i,—<b—§> b—c,—(b—c)
N b, b b, —b b, —b 0,0

Table 1: Auxiliary game

A.2 Proof of Proposition 6

Take any cooperation path in which at least two players volunteer in some period T and
which is sustainable as a subgame-perfect Nash equilibrium. For any ¢, let U; be player i’s

continuation payoff in period T" along the cooperation path.
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We first argue that for all ¢, U; must be greater than or equal to (2):

b—dc
1—46"

U; > for all 4. (8)
If player ¢ is called to volunteer in period 7', she will cooperate if and only if U; is greater
than or equal to (2), her payoff from the deviation. If player ¢ is not expected to contribute
in period T, then her payoff in that period will be b, while her payoff in the rest of the
periods must be greater than or equal to her IR level, b — c. Hence, her total payoff cannot
be lower than (2).

We next show that there exists ¢ such that U; is less than or equal to (1):

b—
U; < N _c/én’ for some 1. (9)

Since along the cooperation path the public good is always produced, in each period, the

joint payoff of all players is nb — c¢. Thus,

n +o00
. nb—c
— —c) = _ 1
]E:l U, tEZO 5" (nb —c¢) T3 (10)

Trivially, there exists ¢ such that U; does not exceed the average of all the players’ payoffs:
U< zn: U (11)
i > n g J.

Together, (10) and (11) imply (9).

Statements (8) and (9) together imply that (1) is greater than or equal to (2). The latter
condition is equivalent to § > 1/n. Hence, by Proposition 5, the cooperation path in which
all players volunteer every period is sustainable as a subgame-perfect Nash equilibrium.

To show uniqueness, take 6 = 1/n and take any sustainable cooperation path in which
at least two players volunteer every period.

First, we argue that in any period, every player ¢ gets the continuation payoff of at least
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as much as she would get in the cooperation path when all players volunteer every period:

b—c/n
1—0 "

U, > for all 4. (12)

If player ¢ is not a volunteer in a given period, then her continuation payoff will be at least

(2). Then, since
b—c/n b—dc 1
= for d = — 13
-5 1-0 T w (13)

we get (12). If player ¢ is volunteering in a given period and (12) does not hold, then (13)
implies that
b—dc

UZ‘<—1_5,

meaning that the continuation payoff of such volunteer is lower than her payoff from the
deviation — a contradiction with sustainability.

Second, we argue that in every period, for every player, her continuation payoff is exactly
equal to the continuation payoff she would get in the cooperation path when all players
volunteer every period:

_b—c/n

Ui = ﬁ, for all i. (14)

Indeed, (14) follows directly from (10) and (12).

Finally, observe that the only possible way to achieve (14) in every period is for every
player volunteering all the time. Indeed, suppose that there is player ¢ who does not volunteer
in some period. Then, her continuation payoff in that period is greater than (14):

b—c/n  b—dc/n _b—c/n
1-6  1-9§ 1—6°
——

cont. payoff in the next period

b+6 -

A.3 Proof of Proposition 7

Lemma 1 below is a central step in the proof of Proposition 7 of the paper, which was omitted

in the text.

Lemma 1. For any n > 2 and any k € {2,...,n}, there ewists 9,,, € (0,1) such that
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condition (6) on the discount factor § € (0,1) is equivalent to § > 0, ,,.

Proof. Define the function L(6) = (k+1)6 — 1 — kdrtL.
Observing that L(1) = 0, careful factorization yields

L(6) = (1 — 6) (kS + k&® + ...+ ké* —1).

Next, define
H(8) 2 ko +kd* + ... + kot — 1.

Since H'(0) £ k+ k6 +k6*+...+ké*~1 > 0for 6 € [0,1] and since H(0) < 0 and H(1) > 0,
H () has a single zero on [0, 1], call it §, ,, with all the other solutions of H(0) = 0 therefore
being either complex roots or lying outside the interval [0, 1].

Since L(d) = (1 — 6)H(), the equation L(J) = 0 has a real root at § = 1 and ¢, as
unique real root on the open interval (0, 1).

It remains to show that L(d) crosses the horizontal axis from below. To this end, note
that L(0) = —1 < 0 and L(J;,, +¢) > 0 for small e. Hence, by the Intermediate Value
Theorem, L(0) crosses the horizontal axis from below at ¢, ,. Since d,,, is the only real root

on (0,1), it follows that L(d) > 0 if and only if § € (&, ,,1). O

A.4 Proof of Proposition 8

(1) We show that as k increases, the mapping L(0) £ (k + 1)§ — 1 — k§%*! shifts upward.
Treating k as a real number for simplicity, we have OL/0k =0 — it 4 %5%“ In(é) > 0.
To establish the latter sign, consider the change of variable ¢ = %(— Ing) > 0. It follows
then that §% = e~* and

3_L_ P P _ —t
ak—é[l e te' ] =6[1—(1+t)e"].

By the elementary inequality e' > 1+t for t > 0, we have (1 +¢)e”" < 1. It follows that

oL L
%—5[1—(1+t)€ ] >o.
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Since L crosses the horizontal axis from below (see the proof of Lemma 1), its resulting
unique zero, i.e., d, ,, decreases in k.

If k = n, then L(§) = (n+1)d —1—né*> = (1—6)(nd — 1), which implies that ¢, , = 1/n.

(ii) Likewise, we show that the mapping L shifts upward as n increases. This follows

directly from the fact that

T
— = —=§k " In(d) > 0.
on
Hence, its unique zero, i.e., d, ,,, decreases in n.

As n — 400, L(d) — (k + 1) — 1, which implies that &, ., = 1/(k +1).
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